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Quantum Mechanics in Curved Configuration Space
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Different approaches are compared to formulation of quantum mechanics of a parti-
cle on the curved spaces. At first, the canonical, quasiclassical, and path integration
formalisms are considered for quantization of geodesic motion on the Riemannian con-
figuration spaces. A unique rule of ordering of operators in the canonical formalism and
a unique definition of the path integral are established and, thus, a part of ambiguities in
the quantum counterpart of geodesic motion is removed. A geometric interpretation is
proposed for noninvariance of the quantum mechanics on coordinate transformations.
An approach alternative to the quantization of geodesic motion is surveyed, which starts
with the quantum theory of a neutral scalar field. Consequences of this alternative ap-
proach and the three formalisms of quantization are compared. In particular, the field
theoretical approach generates a deformation of the canonical commutation relations be-
tween operators of coordinates and momenta of a particle. A cosmological consequence
of the deformation is presented in short.

KEY WORDS: gquantum mechanics; Riemannian space; geodesic motion; deforma-
tion.

1. INTRODUCTION

Quantum mechanics on the Riemannian geometric background is the sim-
plest part of the fundamental problem of association of general relativity and the
guantum theory. In the quantum mechanics, the problem of definition of appro-
priate physical observables appears in a relatively simple form, which emerges
quite completely in quantization of gravitation (see, for instance, Rovelli, 1999).
On the other hand, the quantum mechanics of a point-like particle may be con-
sidered as a limiting case of the string dynamics. It provides also a description
of interesting physical models such as a motion on homogeneous spaces of some
groups (see, for instance, Grogtel, 1997; Marinov, 1995). An important point
is that the Quantum Field Theory in curved space-times which is applied success-
fully to describe fundamental processes in the early Universe is based in fact on
some quantum mechanics of a (quasi-)particle, at least, implicitly (see Gibbons
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and Pohle, 1993; Tagirov, 1999). At last, one may expect that a modification of
the well-established fundamental theory, such as quantum mechanics, to a more
general geometrical background can reveal new features of the theory and serve
for better understanding of it.

The problem has a long history related to the names of Podolsky, Dirac,
DeWitt, and other less known theorists. Nevertheless, it has not still a satisfactory
unambiguous solution. The main approach is based on the idea of quantization
of the classical Hamiltonian systems and their generalizations. (In the simplest
expressions, the quantization is a map of a classical theory in terms of the usual
functions on a phase space to a mathematical structure in terms of noncommuting
objects along definite aggregates of ruliesrfialism3, which depends on a small
parameteh the physical value of which is the Plank constant.)

There is a number of different formalisms of quantization and it is natural to
expect that they give similar results for the same physical system. Unfortunately, it
is not the case even for such an elementary system as the point-like chargeless and
spinless particle if the configuration space is curved. Moreover, as a rule, there are
fundamental ambiguities even in the framework of the same formalism and even
for a simple class of phase spades ~ R, ® V,, whereV, is then-dimensional
Riemannian configuration space.

In the canonical and path integration formalisms, see Sections 2 and 4 re-
spectively; the ambiguities appear in the following two forms. The first one is the
known problem of ordering of operatos, Pj,i,J,...=1,...,n, which cor-
respond to the Darboux coordinatgs P;j in P2y when they are substituted into
a function f (¢, p) (say, through a power expansion) to obtain the corresponding
quantum observablé or the path integral. Generally, there is no leading principle
to single out a certain rule of ordering among infinitely many ones. The ambguity
does not attract much attention in view of that all of the rules lead to the same
operatorf up to an additive constant ff(&, p) = fo(&, p) + f1(€) + f2(p), where
fo is a second-order polynomial of the Darboux coordingtes and f;, f, are
appropiate arbitrary functions. The classical Hamiltonians of the typical problems
of the standard quantum mechanics in the Euclidean configuration Epeee
in this class if the preferred Cartesian coordinates are takéh. &he latter is
usually assumed with no stipulation. The curvilinear coordinates are used, if any,
a posteriorj only as a technical tool, for example, in relation with a symmetry of
the potential. However, even if,, as soon as curvilinear coordinates are taken
asobservablesi.e., as one half of the phase space coordinates, thémt was
a second-order polynomial in the Cartesian coordinates and their conjugate mo-
menta, fails generally to be a polynomial at all. Respectively, the dependence of
gquantization on a choice of ordering becomes actual. In addition, for the path
integration, there is an ambiguity in the choice of the points on a lattice of in-
tegration, in which the integrands are evaluated (see, for instance, D'Olivo and
Torres, 1989; and Section 4 below). It is a common problem for any geometry of
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the configuration space and system of coordinates, again except the dase of
Cartesian coordinates and the quadratic funcfign

The second ambiguity consists in that the result of such quantization depends
on the choice of coordinatésin V,,, thatis not invariant with respect to diffeomor-
phisms ofV,, or, diffeononinvarianeven if a rule of ordering is fixed, although the
original classical theory is diffeoinvariant. Again, in the standard theory, the prob-
lem is obscured by existence of the Cartesian coordinates. It looks as there were
an implicit postulate that quantization should be performed just in these preferred
coordinates. However, what should one d&jnwhere the Cartesian coordinates
do not exist at all? An attempt to answer on the question will be given below in
Section 5 on the basis of results of the preceding sections.

According to Bordemanet al. (1998), the deformation quantization in the
framework of the Fedosov formalism (see Fedosov, 1994), leads to diffeoinvariant
guantum mechanics ix,. However, this result is obtained by using a particular
rule of ordering, namely, Weyl's one. Thus, at least, the ambiguity in ordering
apparently retains.

Geometric quantization in the Blattner—Costant—Souriau formalism (see, for
instance, Abraham and Marsden, 19%8jatycki, 1980), is reduced to the quasi-
classical approach by Pauli-DeWitt (Pauli, 1950-51; DeWitt, 1957) for the simple
case under our consideration. The formalism is diffeoinvariant and includes no
ordering procedure, but it is approximate ab initio because it starts witmaatz
where the (unknown) quantum propagator is substituted by the quasiclassical one.

Among other approaches to quantizatiorManit is worth to mention the one
based on embedding, to an Euclidean space of a greater dimension and using the
Cartesian coordinates in it (Ogawetal., 1990). And, at last, the present author de-
velops an approach to quantum mechanics of a parti®lg iwhich is an alternative
to quantization of mechanics and may be called the quantum-field-theoretical one,
or the QFTapproach(Tagirov, 1990, 1992, 1996, 1999). It reproduces quantum
mechanics in the gener¥l ,, in a diffeoinvariant and ordering-independent form
as the quasi-nonrelativistic asymptotic of a quasi-one-particle sector on an appro-
priate Fock space for the quantized neutral scalar field. (In the paper by Tagirov
[1996], the field of spin 1/2 is considered but the result needs some refinement and
justification along the lines of Tagirov [1999] and Section 6 of the present paper.)
Thus, in this approach, the canonical quantization procedure is shifted from the
particle phase space to the quantiazation of the field. The diffecinvariant analogs
of the operators, p mentioned earlier prove to satisfy a deformatiaf the
canonical commutation relations such that the position operators mutually do not
commute; of course, the conjugate momenta are also mutually noncommutative.

2The term “deformation” is used very deliberately in the present paper to denote a substitution of
the Poisson or Lie bracket by an asymptotic sum the terms of which are bilinear and antisymmetric
in the same sense as the brackets themselves are; this is only one of the properties of the notion of
deformation used in the mathematically more rigorous texts.
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The deformation parameterds?. Just this and other curious results of the approach
stimulated this author’s interest to the state of art in the traditional approaches to
guantum mechanics .

In this paper the three historically first formalisms of quantization, the canon-
ical, quasiclassical ones, and the path integration, will be considered in application
to the geodesic motion in configuration spagevith the general time-independent
metric tensow;;j (§). The latter means that ttepace-timeés Vi, ~ Ry ® V. The
Hamilton operators arising in the three formalisms are compared in a certain ap-
proximation in which they should come to the same Hamilton operator. This condi-
tion distinguishes a unique rule of ordering of the primary observables operators for
the canonical and path integration formalisms and gives an unambiguous prescrip-
tion for the latter. (Along the reasons mentioned earlier, these two formalisms
are considered below as “more exact” ones with respect to the quasiclassical
one.)

We postpone the deformation quantization approach and embeddifdoof
more serious special consideration though use the general idea on deformation of
the Poisson brackets in a formulation of postulates of canonical operator formalism
in Section 2.

In Section 2, it will be shown that, for the canonical quantization of the
geodesic motion iV}, the freedom in the choice of ordering rules is reduced to a
one-parametric setin each fixed system of coordirgtésSince diffeomorphisms
of V,, are determined by arbitraryC*-functions, one may say figuratively that
the overall arbitrariness is “+ co3-dimensional” in this case.

In Section 3, itis shown that the one-dimensional part of the arbitrariness can
be removed by condition of coincidence of the canonical Hamilton operator with
that by DeWitt (1957) in a certain approximation.

In Section 4, the path integral for the quantum propagator of geodesic motion
is constructed so that the phase of the integrand is proportional to the classical action
and the Hamilton operator generating the propagator coincides with DeWitt's
one in the same approximation, as in the canonical case. This fixes the same
rule of ordering of the primary operators as in Section 3 and unambiguously
determines that the integrands should be evaluated at the nodes of the lattice of
integration.

In Section 5, the obtained solution of the problem of ordering is discussed
and a possible explanation of the diffeononinvariance of the canonical quantum
mechanics inv, is given.

In Section 6, a survey of main results of the above-mentioned QFT-approach
is given and compared with the results of quantization of mechanics.

The paper adopts the so-called heuristic (or, naive) level of mathematical
rigor: many definitions and relations need further refinement to have an exact
meaning. It is expected that the latter can be achieved if physically sensible results
appear at our imperfect level.
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2. CANONICAL QUANTIZATION OF GEODESIC MOTION
IN THE RIEMANNIAN CONFIGURATION SPACE

2.1. Hamilton Theory of Geodesic Motion

To emphasize a relation of the system under consideration to general relativ-
ity, let us start with geodesic lines in the generieHth)-dimensional Riemannian
space-timeV; , of the Lorentz signaturen+ 1. Letx%, (, 8,... =0,1,..,n)
be some coordinates i ,, andt, &', (i, j,... =1, 2,..,n) be normal Gaus-
sian coordinates generated by the normal geodesic translation of a given Cauchy
hypersurface = X (tp) and some coordinatés$ on it. The metric form is

ds® = gyp dx* dx?
= c?dt® — wij(t, £)de' dg)  t e [to, ta]. 1)

(The range where the coordinateg’ and the representation of the metric (1) are
valid is indicated, for instance, by Destti al. (1994, Section 2).)
The space-time geodesic lines are extrerméls: x*(s) of the action func-

tional
S o B ) t2
W:—mc/ d%/gaﬂdididg/ L/d3=/ L dt, (2)
s ds ds s t

which satisfy the following constraint:

g*" (X) o pp = M*c?, (3)
wherep, are the generalized momenta
(8% dr e dxe dxf\ Y2 dx? @
S = G /ds) $4s as ) s

The canonical quantization as a m@mf functions on a phase spae=Pon 4 2 ~
T*Vy,to operators acting on a Hilbert spdgdsee a more exact definition below)

can be applied to this diffeoinvariant system with constraint (3). However, it would
be a map on operators acting on the spage- L2(V 3; C; 4/9dsx) which cannot

be interpreted as a space of states of a real particle specified by a position in the
configuration space (see Tagirov, 1999). For the standard probability interpretation
in the Schodinger representation, the operators of observables should be defined
on L2(Z; C; J/wd"x). It is realized by quantization of the reduced Hamiltonian

3Here and further the spacég(Vy 3) and L2(V,) are defined with respect to the natural measures
induced by the corresponding Riemannian metric forms. This allows to consider the functions from
these spaces as scalars with respect to the diffeomorphisvhg iandV,. If there were no metric, a
more complicate construction with a class of the equivalent Lebesgue measures on the configuration
space and the half forms instead of the scalars should be used (see Abraham and Marsden, 1978,
p. 427).
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system in which one solves the constraint (3) at the classical level. To this end,
one represents (3) in the form

<po+mc,/1+%)<po—mc,/l+%)=o (x° = ct), (5)

where

of 1
Ho = Ho(&, p; 1) = Ew” &:)pip;. ©)

For the nonradiating and spinless patrticle (just only it moves along a geodesic line
in the Riemannian space-timé ,), we shall take, as usually, the solution of 5
with respect topy such thatpg> 0. Then, in the theory with the constraint thus
resolved, the Hamilton function will be

2Ho
H(, p) = m& 1+m02' (7)

There is an interesting intermediate approach of Gitman and Tyutin (1990) in
which both the solutions of constraint (5) are usedHirs) through introduction
of a special observable “the sign @f.” This leads to a state space consisting
of two L?(Ey 3; C; dgx), {x'} € E1.3, which describe particles and antiparticles re-
spectively (being neutral, they are identical). Gavrilov and Gitman (2001) have
extended the approach to the cas&/pg. However, a remark arises concerning
this work, which will be made at the end of the present section, near the formula
(29).

The nonreduced and reduced formalisms differ in that, in the former case,
a time-like coordinatex® is included to the set of observables whereas, in the
latter case, the variableis an evolution parameter. In the classical theory, these
formalisms are physically equivalent versions of the same theory; however, quan-
tization of them leads to different theories.

In the reduced formalism, observables for fixemre functions on the phase
spaceP,, ~ T*X(t), the cotangent bundle ové&(t). They may be considered
locally as functions of Darboux coordinatgs pj, with (€'} e ©(t) and

0 — mawi (t, €)' ®

\/Cz—wii(tyé)éiéi.

Of course, the Darboux coordinates fixed by a choice of coordightesz (t) are
observables, too. They form the so-calf@imary observablei the sense that
other observables are functions of them.
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2.2. General Concept of Canonical Quantization

Consider now the concept of quantization of a classical Hamiltonian sys-
tem. A general definition of the asymptotical quantization can be found in the
book by Karasev and Maslov (1991, chap. IV). We shall adopt the following
simplification of the deformational version of this definition. (The simplification
consists in that the deformed Poisson brackets are supposed in condition (Q2)
below instead of the usual definition which starts with-@roduct of symbols of
operators.)

Let s, be an appropriate subalgebra of the Poisson algebra of functions
fe COO(PZn).

Quantizationis a map

Q:sm> f 3 f(operators in a Hilbert spadé), (9)

satisfying the following conditions:

(Q1) 18 1 (the identity operator ifi):

(Q2) (f.g)n S in7Yf, g = in"}(fg— gf) where{f, gjn=1{f, glo+O(h)
is an antisymmetric bilinear functional éfandg and{ f, g}o={f, g} isthe
Poisson bracket ifP,n;

(Q3) f3 ()T (the Hermitean conjugation dfwith respect to the scalar product

in H);

(Q4) a complete set of functions (maximal Abelian subalgetff®) ..., f®:
f) e sy, ismappedto acomplete set (in the sense by Dirac (1948, chap. )
of commuting operator§ @, ..., ™,

It follows also from the condition (Q4) and the Stone-Von Neumann theorem
thatH ~ L%(Z; C; /wd"X).

The main problems of quantization consist in an infinite number of possi-
bilities to construct the functiondlf, g}, (deformation of the Poisson bracket),
in difficulties with construction of a complete set on the topologically nontriv-
ial spacesP,, and in diffeononinvariance of quantum observables. Here we have
a simple and physically oriented purpose to consider traditional procedures of
guantization in application to a particular elementary system on a class of simple
but nontrivial geometric backgrounds. Therefore, the following restrictions on the
system and spacé4 , andV, under consideration will be supposed.

(V1) Assume thaw/ , is a globally static space-time ani{t) ~ V, are its com-
pletely geodesic sections that exist in this case. It meansuihét, t) =
wij (§). Then, the classical dynamics with the Hamilton functithandHg
are equivalent and refer only to different systems of reference.

(V2) Our main purpose is to construct a quantum image of the Hamilton function
(classical HamiltonianH, for an arbitraryw; (§) € C*°(V,) starting with
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(V3)

(V4)
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the general scheme of quantization (Q1)—(Q2). The minimal algghra
containing all such Hamiltonians is the algebra of polynomialgjinvith

the coefficients depending @n. If a nonrelativistic quantum Hamiltonian
Ho is constructed, then a possible way to obtain a relativistic dnis
provided by the Von Neumann rule (Von Neumann, 1955, p. 313) defining
functions of commuting operatovtsl AN.

o def

F(AL ... AN S FE F(A, ..., Ay). (10)
Being applied to the classical Hamiltonian (7) interpreted in the asymptotical
sense, it gives

def 1 . 1 -
H(Ho) = H(Ho) = Ho— —SHg+ 5o Hg— - (11)

Assume that the topology 6f, is trivial; of course, it does not mean that
the curvature ol, along the metriay;; is zero. The physical meaning of
this condition may not be considered as a restriction on the topology but as
localization of the quantum particle in a sufficiently small domain so that
only local manifestations of the space curvature are essential.

In virtue of the preceding assumption, it is supposed that the coordinate
lines&' onV, are complete and open. In this sense, they are similar to the
Cartesian coordinates.

By the way, under assumptions (V1)—(V4), there are no QFT process of

creation and annihilation of particles by the external gravitational field, and the
quantum dynamics becomes a purely quantum—mechanical one.

The canonical quantizatiomeans here the following realization ©f

(CQ1) Onetakessome coordinaiesatisfying (V4) asacomplete sed), ..., £

in the condition (Q4).

(CQ2) One takes, at first, the algebra of polynomials in the Darboux coordinates

g', p; as the algebrap,.

(CQ3) One imposes the following conditions on the functidrfab}:

(g e =&, )=, &1} =0, (12)
€, pi}n ={€" pito=1{& i} =4, (13)
{pi, Pj}n = {Pi, Pilo={pi, Pj} =0, (14)

thus making the condition (Q2) more definite.
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(CQ4) Then, the quantum imagés p; of these primary classical observables
should satisfy the canonical commutation relations

[€'.&1]1=0, €', pj] =ihsj, [pi, ;] =0. (15)
and may be realized as differential operators

g8 E=F.1 pi—%f)jz_ih<a,-+%aj|nw>. (16)

in L2(Z(= Vh); C; Vod"€).
(CQ5) Further, one maps the basissgfformed by the unity and monomials

EHM ..MM (p)™ ... (pr)™ (17)

onto the identity operatoi and hermitizations of the same monomials
formed by operators', p; along a choserule of ordering(a Hermitean
arrangement of the operators in each monomial). As usual, the rule deter-
mines the functiona{ f, g}y, in the quantization condition (Q2) via com-
mutation of the operators thus obtained, although it is not known to the
present author if any rule determines the functional.

(CQ6) The functional f, g}y fixed by a rule of ordering is taken further as the
general relation (Q2) for any (¢, p), g(&, p) € C*(Pan) in view of the
density of the polynomials i€ (see Berezin and Shubin, 1984).

In general, there are infinitely many possible rules of ordering and a classifi-
cation of them, apparently not exhausting, is given by Agarwal and Wolf (1970).
TheWeyl rule(Weyl, 1931) is the most popular one in the literature. It has some
attractive symmetry properties (see, for instance, Mehta, 1964). For the particular
case under consideration, it may be described as follows. Consider, for example,
the following product p1)2(£1)°, a> 0, b > 0 of noncommuting operators. Then,
the Weyl ordering (p1)2(£1)?)™) of the product is determined by the following
relation (Berezin and Shubin, 1984, chap. 5):
- ! R
(Apr+BEYN = 3 N ARBO((p)*(EYY)

Ip!
a+b=N alb!

S (18)

If one takes the Weyl ordering, then the functiopglg} def {f, g}(hW) is the Moyal
bracket (Moyal, 1949). Taking into account the Riemannian measut® and
condition (V3) on coordinates, one can represent the canonical quantization of

41tis well-known that the operato&s, p j are symmetrical (we shall callermitear) but not self-adjoint
ones inL2(Vy; C; \/wd"€). A consecutive solution of this problem is achieved by introducing the
rigged Hilbert space (see, for instance, Sudbery, 1986). Here, we shall adopt a more simple assumption
that only an appropriate dense subset #ifV,; C; ./wd"¢) is under consideration.



474 Tagirov

the polynomialsf (¢, p) via the Weyl ordering as follows (Berezin and Shubin,
(1984, chap. 5):

f(p, &) 3 (FWy)(&) = (2rh) "w 4 (&)

x fd”s/d"loexp(—%(fi —é/‘)pi)f(p,§;$>

X 0t (EVY(E), v(E) € LA(Z;C; Vads). (19)

Further, in view of the mentioned density of the polynomial€H (P =R, ®
V), this correspondence is adopted as a general definition of the canonical quan-
tization of f(p, &) € C®(Pay).

Another example ishe Rivier rule of orderindMehta, 1964; Rivier, 1957)
which, in application to a monomial (17), is the following arrangement of the
primary observables:

1 - -
EHM - MM ()™ ()™ S 5(@1)'\"1 S EMM (B - (P

(PN - (P EDM - EMM) ET(EDM - EMM (M - (P)™) .
(20)

Similarly to the Weyl ordering, it can be represented in the form,
fE p) S (FPy)E) = (2rh) "o i)

x fd"&/d“p exp<— iﬁ(éi —é")pi> €. P+ ¢, p)

2

X 01 (EVY(E), ¥ (E) € LA(Va; C; Vaods), (21)

which is obtained as the half-sum of the integral representatiogg-oind pg-
orderings given by Berezin and Shubin (1984, chap. 5). Again, the rule (21) is
extended to allf (&, p) € C*(P2n). To the Rivier ordering, its own “bracket” cor-
responds in the condition (Q2), which may be denote{jfag}(hR).

Rewrite (19) and (21) in a compact form

(FWy)(e) = /d”é’Kﬁw)(é;él)df(E/)

and (FRy)E) = / de K P& )y (¢). (22)

It is obvious that the kernels of the form

K& ) ok, &) + 1 - n)KPE, &) (23)
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define an ordering for any fixed value of the real paramet&ro, and, in general,
there are many other possibilities of such linear combinations.

2.3. Quantization of Geodesic Motion

It is the time now to return to the concrete system we intend to quantize,
namely, the system described by the Hamilton functiy¢, p). An important
point is that we apply the Von Neumann rule (10) to the metric tenggE):

NE) S o=0E) =@ 1 (24)
Suppose also thaiperatorsof the form
(3, ... 9,0 (), M>0,

should not appear in the canonical Hamilton operétgr which we are looking
for. It does not mean that the representatiori:k@f as a differential operator in
L2(Vh; C; +/wd"€) should not contaifunctionsof the forma;, - - - ;,, wij (£). Then,
it is easy to see that all possibilities to choose rules of ordering for quantization
along the scheme (CQ1)—(CQ2) are reduced to a one-parametric family (23).
Simply speaking, the possible orderings are all those Hermitean arrangements
of the operatorsd; @/¥, which reproduce the classical Hamiltoni&ty under
assumption that the operators commute and thus satisfy to the Correspondence
Principle. However, if, for example, a system with a classical Hamiltonian of
the form A (£) pi p; p«pr were considered the one-parametric family of kernels
(23) would not exhaust all possible orderings. The latter would form apparently a
two-parametric family and, thus, the ambiguity became larger.

Quantization ofHg along the rule (23) gives the following correspondence
after use of (19) and (21):

2—v

Q 4l
Ho(@, p) = HY) =

S @D + o BI O + 25 il )
(25)
Substituting here representations (16) of the primary operators, one obl@i?ns
as a differential operator ib?(V,; C; /wd"&)
AP = I e + v (26)
0 om_ @ q ’
whereA () is the Laplace—-Beltrami operator f9f,

h2 L v - 1—v ..
V) =~ () + Jaanl + 2 ) @)
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is the so-calledjuantum potentiaand

def j def 1
T yi]!, yilj‘ = Ea)kl(aiw“ + djwii — dwij) (28)

are the Christoffel symbols. Contrary to the kinetic teF§™ <" —(h2/2m)
A (&), the quantum potential is not diffecinvariant. In the generic case, there
is no choice of coordinatesfor which Vq(”)(g) =0 in a domain; it is easily seen
from consideration of the integrability condition of the equaﬁ(éﬁ) =0. In this
sense, the quantum potential distinguishes no preferred coordinate system. This
dependence of the quantum dynamics on coordinate systems can be called appar-
ently a quantum anomaly of diffeomorphisms of the configuration space.

Thus, the arbitrariness in construction of quantum mechanics of a particle
in Vy 3 is contained in the quantum potent}é,j”) in the form of its dependence
on the parameter and on a choice of coordinatés. This arbitrariness is not
trivial because it leads to Hamilton operators with different spectra. Some authors
eliminate it “by hand” setting simplydo= H%™. Just so Gavrilov and Gitman
(2001) do in fact. They consider the spac&V,; C; d"¢) and take there ad, (in
their own notation) the operator

~ 1
GG e
H(() ) — om w

1
3

o
ISH)

o 1 h2
DI Pioi = —— oA, 29
W’ Pjw 2m\/5 (@) (29)

which is equivalent tad""; here, of coursey'® = o'l (£) - 1. The correspondence
principle is evidently satisfied: if one assumes thaand p commute then he
comes toHy. A problem, however, is to go a way in the reverse direction and to
obtain the rule (29) as a Hamilton operator along a more or less well formulated
guantization formalism. Representation (29) can be found in the paper by DeWitt
(1957) but namely as the kinetic part of the total Hamilton operator which includes
also a quantum potential. A brief exposition of this result and its application
for elimination of the ambiguity of the canonical quantization described by the
parametep will be given in the following chapter.

3. QUASICLASSICAL QUANTIZATION OF GEODESIC MOTION
3.1. Dewitt’s Hamiltonian and Riemannian Coordinates

DeWitt (1957) generalized t¥,, the WKB-propagator proposed by Pauli
(1950-51) for a particle in the electromagnetic field zEAs a result, the fol-
lowing nonrelativistic propagator was obtained:

S ik, to)), (30)

(&, tl&o, to) = @~ Y4(E)DY4(E, tI&o, to)w 4(€) exp(—lh
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whereD is the Van Vleck determinant (Van Vleck, 1928)

def t<— 32S(&, to, to))

D(&, t|&, o) = d - 31
(&, t|%0, to) e 96 0] (31)

and

t PR e
S(E, tEo, to) = / %wij@,t)s‘s', g0 ' £ (to) (32)

o

isthe classical action; its minimum is provided by the following equation of motion:

, . , Ak .

'+ & 08 + oM E NS EDE =0, (33)
If dwii(&;1)/0t =0, that is, if V1, is the globally static space-time arn{t) ~
(o) ~ Vi, is a completely geodesic hypersurface, then (33) is the geodesic equa-
tion in Vj,. Restrict our consideration to this simple case, the more so that DeWitt
does, in fact, the same.

Considering the limit — to(¢ — &p) along the geodesic line, connectifg

andg,, DeWitt comes to the equation

2

) h 1
ih (6160 + 5 A0©) — GRa(E)) £l = ol — EN(Elo, (39

whereR,) is the scalar curvature for the metti ; the Riemann—Christoffel and
Ricci tensors being defined as follows:

k
R.)bcd = 3dVoe — dc¥oa + YieVoe — YeeVods Rwjii = Rk - (35)

(DeWitt's definition of R,ij has an opposite sign.) It follows from (34) that the

differential operators

2

. h
BFOW) gy — _
D) = =

(8.0~ gR®). (@)

can be considered as the Hamilton operator on the subspace of the wave functions
(initial data for the Schodinger equation)
(€80) = Ve (€) € L2(Vi; C; Vod"€),

which are localized in a small neighborhood of the pginin the sense that they
satisfy the condition

(W, o(& — Eo)v)
(v, AMy)

whereo(¢ — &) is aresidual term in the right-hand side of (34). Thus, the approach
exposed which is relevant to call the quasiclassical one gives, in the mentioned
approximatesense, a unique and diffeoinvariant Hamilton operator.

<1, (37)
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Atthe same time, DeWitt and some other authors considered the appearance of
the potential i?/12m) R)(£) as an unfavorable phenomenon because traditionally
H %" was taken as the Hamiltonian of the particl&/n They added an appropriate
counterterm into the Lagrangian, that is into the integrand in formula (32), to have
I-]S"”) instead oft gDW) in Eqg. (34). However, the corrected Lagrangian is not the
one of geodesic motion of which quantization is the matter of the present paper.
Actually, the appearance &, in the Hamiltonian is quite in conformity with
the QFT-approach (Tagirov, 1999) a brief exposition of which will be given in
Section 6.

3.2. Comparison of Canonical and Dewitt's Hamiltonians

Now, let us compare the Hamiltoni&ﬁlg”), obtained exactly in the canonical
sense and the approximate quasiclassicali&ﬁ?év). Remind that the latter was
obtained by retracting the poigtto & along a geodesic lineonnecting them.
Thus, a position of with respect t& is naturally defined by the geodesic distance
(&, &) between them and the tangent vecty' (ds)o to the geodesic line &.
These quantities forrthe Riemannian coordinates

) e dei
waikggwﬁjo (39)

ds
with the origin at the poin&p. In these coordinates the metric tensgy, its
derivatives byy' and, respectively, the Christoffel symbgly are represented
as a power series iyl , coefficients of which are polynomials in powers of the
components of the Riemann—Christoffel tensor and of its covariant derivatives
taken atthe origiy' =0, i.e., a&,. Therefore, applying the Veblen method of affine
extensions (Veblen, 1927) using contracted Bianchi identities, one can represent
the quantum potentia}’é”) as a similar series. For our discussion, the following
two terms of the series are sufficient:

HS (y) = e Aw®) — =Rw| - L(3i Re))
0 2m 127, _, 12

¢+owﬂ)
y=0

(39)
The condition of coincidence dfi{’(y) with HP" in the zero-order approxi-
mation is satisfied for the value=2 in (23) and (25). Thus, from the canonical
point of view adopted herehe correct nonrelativistic Hamilton operatdor a
point-like particle in the globally stati¥; ,, is the following remarkably simple
expression:

R 1 . o
HE = 5P €)p;. (40)
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This solves the ambiguity problem of ordering of the primary operators in the
canonical quantization of the geodesic motion. However, the problem of diffenon-
invariance of quantum potenti\aq§2) retains. This problem, as well as the problem
of ordering for the Hamiltonians which are not quadratic in momenta, will be
discussed in Section 5. And now we pass to a justification of the obtained re-
sult coming from consideration of another traditional approach to formulation of
quantum mechanics.

4. QUANTIZATION OF GEODESIC MOTION BY PATH INTEGRATION
4.1. Relation Between Canonical and Path Integration Formalisms

Not only the point-like particle motion but also a number of other mechanical
problems are naturally represented as a geodesic motion or its generalization in
someV,. Usually, the latter are homogeneous spaces of symmetry groups (see,
for instance, Groshet al,, 1997; Marinov, 1995; and references therein). For this
class of systems, the Feynman formalism of path integrals is considered as a very
appropriate approach to solve the Swmtinger equation for the particle propagator
since it takes into account the metric of the configuration space through a natural
measure and representation of the virtual path as consisting of small segments of
geodesic lines.

In this approach, the path integral relates a given quantum Hamiltdhgan
represented as a differential operatot f(V,; C; ./od"£) to some effective clas-
sical Lagrangian (Marinov, 1995). The Hamiltonian may be considered as a result
of quantization of the classical dynamics qj%§c[ibed by the Lagrangian so found. An
inverse problem can be posed: to seldgt = HgF) (the superscript (F) denotes
“Feynman” as will be clear a bit below) so that the effective Lagrangian would
prove to be the classical one for the geodesic motion:

Lens, §) = La(6, &) = oy (€€, (41)

A correspondenckly — HgF) thus defined and taken together with the map (16) of
the primary observables may be caltbé Feynman quantizatioof the geodesic
motion inV,,. Consider such an approach in a brief descriptive form sufficient for
a comparison with the formalisms considered earlier.

So, a problem is to represent, as a path integral, the following formal propa-
gator inVj,

K(E”, t//|$/. t/) — <§.//|efiﬁ(t”ft’)l:|0|%./>’ (42)

for the quantum Hamiltonian of the form

. h?
HOZ_%Aw(E)'FV(g): (43)
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acting inL?(Vy; C; /wd"£). Here we consider as an already-established fact that
the set of the possible (nonrelativistic) Feynman Hamiltonié@? a particle in
Vj, is contained among Hamiltonians (43) with arbitrary potent&ls).

Following the line of calculations by D’Olivo and Torres (1989), divide the
time interval [/, t”] by N — oo intervals of infinitesimal duratioa= (t” —t’)/N
and represerk(s”, t”1&', t') as follows:

N-1

N—-1 S
ke Vg = lim [ []Va@dds [[lale s s). @)
=1

j=1

where§g=¢&', &y =&

To calculate the matrix elements bf, in the configuration representation,
one should represent the differential operatoi() in (43) throughé, p. To this
end,a rule of ordering of thenshould be fixed. Contrary to D’Olivo and Torres
(1989), who, as many other authors on the matter, adopted the Weyl rule, we use
a more general rule (23). Then, we have

Ho= HY) — V(&) + V(&) (45)

Whereﬁg) anqu(“)(S) are assumed to be expressions (25) and (27) respectively.
Calculation of the matrix elements within the terms linearursing our generalized
rule of ordering gives

1 \7N/2N-1
ke v = im [ () T Ve
=1

o) g [ e ae,
<1 e en| peiti(s0052) ],

Agy = {agh S g ). (46)

Here (\]5)(”)(53,1, £;) and I:gf?(&,l, £3, AE;/€) are the quantities that are ex-
pressed, respectively, through the functi/ts(¢) and

A e
Lei (E ’ ?) E Lae, A8/~ V(E) + V" (47)
along the following general rule implied by Eq. (23):
~ — 1- — def 1
O 8) =vfE) + o (fED+ T, &= SE+am).

(48)
Now, the product inJ in Eq. (46) should be represented as a product of
exponentials of some classical action on the intenglsy|, £;], thatis as a product
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of factors of the form
P{ €Len(&), Aéa/e)} (49)

where, in the exponent, the value of some effective Lagrangja(t, £) (in gen-
eral, itdiffers fromLé”fz) stands, which is taken at the po#ite [£;_1, £;] remained
arbitrary for a time being. B

To obtain the representation, all functiongef,, &5, £; under the product in
J should be expanded into the Tailor series near the g§inp to terms quadratic
in A&j, since only such terms contribute to the integral Eq. (46). Further, one
should include the contribution of the preexponential factor to the exponent in a
form of an additional quantum potential. Consider this procedure separately for
the two principally different cases.

(A) The intermediate point evaluation of the integrarids= (1 — u)&;-1 +

u€y, 0< p<1,ie &) ey &)
(B) The endpoint evaluation of the integrangs=¢&;_; or &' =¢&;, i.e., &’
is taken at the ends of the closed intengl ], &;].

4.2. Quantum Potential for the Intermediate Point Evaluation
of Integrands (Case A)

For the generic function (48), one has
Fo) _ t(e 1 Y
fW(&3-1,83) = f($J)+ E — )0 f(EJ)AEJ

2_ ) )
+ 5(7 —ptu )3i 9; f(€)A&;A8;.  (50)

Apply this general formula td (§) = L(")(g A& /€). The lasttermin Eq. (50) turns
out to be equal to

ASJ ASJ

1/2—
_< E )8, 0y (8)) AES AE) =2 (51)

2\ 4

in the necessary order ef
Further, we use the result by McLaughlin and Schulman (1971) according to
which the following substitution can be made under the integration in Eq. (46):

AELAE) — ie%a)”(fj). (52)
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After this substitution in Eq. (51) and symmetrization of the resulting expression
inindexed, j, k, I, one comes to the quantum potential

Vi) s . h* (2—v 2 ij ki ik jl /
ViU Evi) = — = —u+ 1) (39 (@ 0 + 20" w1))(E)),

12m\ 4
(53)
in addition toLé”f?(éj, A&;/€). Another additional term here,
(1 h
(3-0)gronen(# €28 r2kena), e

comes from the second term in Eq. (50) after the use of the same substitution (52).
It adds toLfa‘;f), a term which is proportional ta&' /e ~ &' that is linear in the
velocity. There is no such term ibg and there is nothing to compensate it so
that the condition (41) were satisfied. Indeed, the logarithm of the preexponential
factor

(«]—)(U)(fJ 1.§3)

g - = 55
9= fufeotes D1 9

does not contain a term lineard§: whene — 0:
~ 3 2 o
Gy—1- (gai 9 Inw(E) - <3—2” by “z)ai Inw(€})?) Inw(s@As'As'
+0((A%)?) = Q(&), v; ). (56)

Therefore, to avoid appearance of a term proportional to the velocltygnone
should take

1
>
i.e., &) =E&;, as it is taken by D'Olivo and Torres (1989), who adopt the Weyl
ordering (formula (48) for = 1) from the beginning.

Taking into account the condition (57) and the substitution (52), one can
reduce the contribution & into the path integral (46) to that one more quantum
potentialvs(?”) is added td_gf? in the exponent of the exponential:

w= (57)

V00 = g ©( 5o - (13,7 )o@ o) + 0

(58)
As a result, if one chooses in the initial formula (43)
VE) = V) E Vo) + V() + V8
_ h? <2v +7

~%am > 'l M —(5—2v)wika)“>8i8ja)k|
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2
h V+2wkmwlnwij _ V—zwimwjnwkl_(v_z)wimwknwu
4m 4

X 3 wmmdj Wi, (59)

then, in the integrand of the path integral, only the following product remains in
the required approximation

1‘[ exp{ LaE)] (60)

that is a product of exponentials of the ratio of the classical action of the geodesic
motion between the pointg_; andé&; to the Planck constatt

Thus, we have determined a mélg — H(F ") of the Hamilton function of
the geodesic motion i, on operator (43) Wlth guantum potential (59) is a ver-
sion acting orL?(V,; C; /wd"&) is a version of the Feynman quantization of the
geodesic motion iv,. It is not diffeoinvariant as well as contains freedom in the
choice of the value of parametercorresponding to arbitrariness of the ordering
rule in the canonical quantization. Could one selesb thatV(F ")(g) would co-
incide with the result of the quasiclassical quantization (36) in the region where
such comparison is relevant, i.e., in a neighborhood of the origin of the normal
Riemannian coordinateg? The answer is no, it is not possible because

. h?
V) = o2 (0)+0() (61)

independent of the valu# v and, actually, independent on the choice.of hus,
the initial ambiguity of the canonical quantization not only retains but also becomes
larger in the considered version of the Feynaman quantization.

4.3. Quantum Potential for the Endpoint Evaluation of Integrands (Case B)

In this case, if one takgs =0 or u = 1, again the inadmissible addition of a
term linear in¢ to the exponent of the exponential occurs. It is a consequence of
an asymmetric contribution of the endpoints of the intergal {, &,] while, for a
given functionf (¢), expression (48) foff )(£,_1, £;) depends on the endpoints
symmetrically. However, the following symmetric expression fé&?,

f”M(EJ_l,sJ)— SFED)+3 f(sJ)+ (a.f@J ) — & F(8))AE,

+ 1—6(ai 9j T (63-1) + 319; f(£2))A8L AE) + O((AE3)),
(62)
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can be easily obtained4f_; andé; are at a short distance. Applying this formula
to ) = I:g# in the exponent in formula (46), one should consider contributions
of the adjacent intervals|_», £;5_1] and 3, £€;.41] at the pointst;_; and &3,
respectively.

The total contribution to the phase&tof the terms oﬁ:g}f), which are linear
in A&, is

.vh
[ 8—m6wk|(éa)3i wki(€1)8', (63)
and it can be neglected in the path integration. Here, substitution (52) and relation
Afy_1 = A&y — €%+ O(ed) (64)

are used. Making these substitutions in the terms which are quadrati, ione
obtains that a quantum potential

. vh?2 o o
Vé ) — —%((w” " + 2w'ka)")8i Bja)k|) (65)
is added td_{?). )
_ The contribution to the phase of the adjacent preexponential terjvend
Qj41,

Q- Qi1 =exp(InQ; +InQy.9), (66)

can be calculated in a similar way. To this end, expand the terms in the exponents in
powers ofA£; andA£;,1 uptoO((A£)3) and collect the terms with the coefficients
that depend o§;. The remaining terms go over to the analogous contributions
at the pointst;_; and&;.1. Then, using relation (64), one obtains the following
function ofé;:

v—2

8

2_ 1 o
% i Inw+ <l—6”ai djInw+ 3—23i Inwd; In w) - AEYAY + O(€2AE).

(67)
Obviously, the first term here can be neglected under the integration. Hence, using
substitution (52), one finds a contribution to the phase at the pginta form of
the following quantum potential:

v h2 ij
v = —ﬁa)”(Z(Z— 1)3i9; INw 4 8 In wd; Inw). (68)
Then, one should put
V(E) = VEE) V) + ViE) + V) (69)

in (43) to retain in the phase only a ratio of the classical action near the foint
for the time intervak to the Plank constarit.
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Now, letus considév’éF;”) atthe origin of the normal Riemannian coordinates
y'. Note at once tha¥,"(y) = O(y) since

30w (y) = %(R(w)ikjl + Rw)iljk)(0) + O(y), (70)

(see, for instance, Synge, 1960). A nonvanishing contribution \Mész can be
given only by the first term in (68). The contribution vanishes identically if and
only if

v=2 (71)

Thus, we come to a remarkable justification of the ordering rule which had been
found by comparison of the canonical and quasiclassical Hamiltonians in Section
3. At the same time, we have fixed a unique way to calculate the path integral
and, in particular, a prescription to evaluate the integrand functibegshould be
evaluated at the nodes of the lattice of integratidbhe prescription differs from

that induced by the Weyl ordering according to which the evaluation should be
done in the midpoints of intervals of the lattice.

It should be noticed also that the ordering corresponding=t® was men-
tioned among many other ones by D’Olivo and Torres (1989), but we have singled
out it from a two-parametric (im andu) set of possible ordering with a necessity.

In the next section, a question will be discussed in particular why the comparison
of quantum Hamiltonians in a vicinity of the origin of the Riemannian coordinates
ha(lzs) a special geometric meaning. As for now, we give the complete expression for
Ve

. h2 - o
VéF'z) = ——12n(2wllwk| + a)lka)”)aiaja)m

h? . i
—ﬁ(zaiw” djInw + 0" 3 INnwd; Inw). (72)

Of course, this Feynman quantum potential differs, in general, from the canonical
one:

h2 - 1
VP(E) = —R<3i (@ y)) + 800" — Ew” VIV]')a (73)
(i.e., Eq. (27) fon = 2) and the question remains, which of the potentials is “more

correct?”

5. DISCUSSION OF THE RESULTS OBTAINED

Thus, takingv =2 in Eq. (23) is proposed as a concrete and unambiguous
solution of the problem of arbitrariness the ordering rule, one of the main difficulties
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of the canonical quantum mechanicsvn However, the rule is obtained namely

for observables (Hamiltonians) which are quadratic in momenta. If one attempts
to adopt the logic of our construction for an observable of a more complicated
structure, the rule of ordering thus obtained will determine its own “bracket” in
the quantization condition (Q2). It is unclear, will this rule be unambiguous but, in
any case, we come to the conclusion tfatdifferent classes of observables, there
should be used different “bracketg’,.}, in condition (Q2). This conclusion may
seem rather strange, but, at least, it does not contradict to the known experimental
data since the corrections to the Poisson bracket in the left-hand side of condition
(Q2) are very small and, correspondingly, differences of corrections for different
versions are small too.

Further, the result refers to the nonrelativistic version of the geodesic dynam-
ics. A more difficult problem of quantization of the relativistic version remains,
which is based on HamiltoniaH (¢, p), eq. (7). Its possible asymptotic solution
by the use of Von Neumann’s rule in the form of (11) has already been given in
Section 2. However, if, for any classical Hamiltonian, its own canonical quantiza-
tion has to be constructed, then the way which was followed for the Hamiltonian
(6) should be Passed anew for (7). In this case, an analog of the quasiclassical
HamiItonianHoDW) should apparently be the quantum Hamiltonian calculated in
the Blattner—Costant—Souriau formalism for the terms of the asymptotic expansion
(7). It is calculated for the first four terms by Kalinin (1999) and differs from the
result of an immediate application of the Von Neumann rule (11). An analysis of
this difference seems to be an interesting task for understanding relations between
different formalisms of quantization.

Let us pass now to the important point that, to determine theuwe, it
was principal to compare the Hamiltoniark)’, HPW, K| and H§Y in a
vicinity of the origin of the Riemannian coordinatgsnamely. Why is this system
distinguished among all possible systems? An answer is apparently as follows.
The position of a poingz'} is defined in the Riemannian system completely by the
geodesic line connecting the point with the orig&ﬁ;} and, therefore, only by the
metric of Vj,. Indeed, according to Eq. (38) the normal Riemannian coordinates
y3(£) =n@(&)s(£; &) of the point{s'} are completely defined by values of the
geodesic distancs(; £) and projectionsi®(£) = e@(dé' /ds), of the tangent
vector to the geodesic line connectingndéy. The coordinate lines
k+1 — const,. .., y" = const, 1>k <n,

(74)
are distinguished by that their alcurvatures vanish. Imagine that a similar system
of coordinates realized not by the geodesics but by the lines determined by some
other equation. Take, for example, the geodesic equation with an external force
in the right-hand side. Such line has, at least, one proper curvature determined
by the force (see a physical oriented exposition of the question by Synge, 1960).

y! = const,..., y*! = const,y
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Respectively, these exterior fields of curvatures of the coordinate lines enter into
quantum theory.

Thus, the class of the Riemannian coordinates turns out to be a preferred one.
It seems to contradict the dogma of general relativity on equivalence of possible
systems of coordinates. The contradiction may possibly be solved as follows. A
guantum—mechanical description of a physical system should include an indication
of the way of measurement (observation) of properties of the system (for a recent
discussion of the question, see Rovelli, 1996). In the &tihger representation,
a system of coordinatgg'} plays two roles simultaneously. On the one hand, it
arithmetizes (“digitizes”) the configuration space by its local mafiRenOn the
other hand, it specifias primary observables represented in quantum mechanics
by the operatorg the spectra of which may be considered as formalization of
indications of an apparatus detecting a position of the particle. Numerical values
of the indications should not depend on the arithmetizatioV,pfind, in this
sense, should be represented by scalars with respect to transformatigss of
Therefore, let us separate the two roles of the coordinates as follows: keep for
the arbitrary coordinates' the role of arithmetization o¥, and introduce &
canonically conjugate scalar functiaqf8(¢), Py, p) by the following canonical
transformation:

€', pi} = {a®@), py(E P} (75)

Hereq®(¢), are fixed @ functions such that rankd; )| =n, and pg(¢, p) def
Kiy(E)pi where

_ 1 o _ .
K{jp(€) = 5deqaq® €= eqy, a0 ... 3,00 (76)

aren vector fields and'1z-'n, ¢j,;, ;) are completely antisymmetric symbols for
both upper and lower indices. Of course, one may tgRké) =£' as a particular
case, which means that the arithmetization/gfand observation of the particle
position are performed by the same tools.

The operators it.?(Vy; C; /wd"€), corresponding to the scalar primary ob-

servableg|V(£), pj)(&) are
V) =qV) - 1, (77)
" . 1
Piy = _'h(K(Ij)(f)VI + EVI Kéj)(é))- (78)
Introduce a scalar Hamilton operatlétf)”)'(s) from the condition that it coincides
with H$(¢) whenq®(¢) = &' Restricting for brevity to the case of= 2, one has

oy 1 . . h? 1 1
HO L = 500 a0agD Py = —— Aw) — ZVFv+ SVRv, ), (79
0 orr; POAAT 07 A By o\ A = 5 ViVich Vv (79)
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vic €' K Vimag®. (80)
The quantum potential in the right-hand side of (79) does not depend on the choice
of coordinateg', but does on the choice of the observables of posii¢). This
corresponds to the conceptrefational quantum mechanickeveloped by Rovelli
(1996) according to which different methods of observation of a quantum system
give different amounts of information on the system. One may think that choosing
the Riemannian coordinatg3 as observables, i.&® (&) = y2(£) gives maximal
information on the quantum analogue of the particle moving along a geodesic line
in V, because, in this case, no outside information is added in the form of the
proper curvatures of coordinate lines.

6. ON QFT-APPROACH TO QUANTUM MECHANICS
IN CURVED SPACES

6.1. Quantum Field Theoretical Basis

To give a more complete exposition of the problem of quantum mechanics
in Vp,, an approach which is an alternative to quantization of the geodesic motion
will be outlined in the present section (details can be found in Tagirov, 1999). It
was mentioned in Section 1 as the QFT-approach.

The approach is based on quantum theory of the linear real scalar field
©(X), X € V15 in Vy 5, of which the quanta are supposed to be the point-like spin-
less and chargeless particles. Thus, one may think that it should have a domain
of intersection with the approaches based on quantization of the geodesic motion
and considered in the preceding sections.

A sufficiently general equation of the field VA , is

2
mc def
D¢ + ¢ R (X + (—) ¢=0, xeVi, O=g¥v, Vs (81)

h
Here¢ is an arbitrary dimensionless real constaRg,(x) and Vv, are, respec-
tively, the scalar curvature and the covariant derivativ®ip. Two values oft
are especially distinguished. Foe= 0, the fieldg(x) interacts with the external
gravitational fieldg.s(x) minimally, that is switched on by immediates substi-
tution of the partial derivatives with respect to the Cartesian coordinates in the
standard Klein—Gordon equation by the covariant derivatives with resp¥gt,to
For ¢ =(n—1)/4n, the interaction is conformal-invariant in the limit of=0;
for n=3 this property was first noticed by Penrose (1963) and studied in de-
tail by Chernikov and Tagirov (1968) and Tagirov (1973). The latter authors had
found some other properties of the theory with the conformal coupling, which are
favorable from the physical point of view.
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In the globally staticvs ,, by which the scope of this paper is restricted, one

hasRg) = —R,. If, in addition,n= 3, and¢ = 1/6 then a nonrelativistic limit
of (81) for conformal coupling will be the Sabdinger equation just with the
Ham|lt0n|anH W) However, an almost methaphysical question arises here: Why

the quasmlassmal approximation leads to the Hamlltorhieg%w) to ¢ =1/6 for
any dimensiom while the scalar field theory with the conformal coupling leads
to the same Hamiltonian only for the dimension of the real ward3?

For atime being, we consider again the general metric (1), not necessarily the
globally static one. Canonical quantizatiorgdgi) in the generaV, , in the Fock
representation is essentially based on the complexificaipa ® @ C of space
® of solutions to Eq. (81) and a selection®f C ®. which can be represented
as

3 -3 @b (82)

(see, for instance, Gibbons and Pohle, 1993). Hére,and ®* are mutually
complex conjugate subspaces®{, for which the conserved sesquilinear form

(o, o2}y =i /X o (@1(X)up2(X) — J@1(X)e2(X)), (83)

is respectively positive and negative, and thus provieleand®™ with pre-Hilbert
structures.

Assume that a formal (and auxiliary) bagigx; A)} in @~ exists, which is
enumerated by a multi-indeX having values on a s¢f} with a measure.(A)
and orthonormalized with respect to the inner product (83). Then, the quantum
field operator in a Fock spacE can be introduced

o(x) = /{A} du(A)ET (A)p(x; A) +E (A)p(x; A) = 97 (X) + ¢~ (x).  (84)

(Here and further, operators A are denoted a® and calledQFT-operators
contrary to the quantum—mechanical onesQdf-operators which are denoted
throughout the paper a®.) The operator&*(A) and & (A) are creation and
annihilation of the field modeg™(x; A) € & (or, of quasiparticles)They satisfy
the canonical commutation relations

[E7(A), E7(A)] = [E7(A), & (A)] =0,
/{A} du(A) F(A)E(A), E7(A)] = f(A),

for any appropriate functiori (A). They act in the Fock spacg with the cyclic
vector|0> (the quasivacuuhdefined by the equations

& (A)0 = 0. (85)
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6.2. QFT-Operators of Observables

Now, the following diffeoinvariant quantum field observables can be naturally
introduced.The QFT-operator of a number of quasiparticlegletermined in the
standard way (see, for instance, Schweber, 1961, chap. 7, Section 3):

N@z) = / do®(¢F 0.6~ — 80T 37),
h}

def

te / do (N (), (86)

Wheredo(x) Wd“g is the inner volume element &f.

The QFT-operator of the projection of momentum of the figll) on a
given vector field K(x) is also a standard expression determined by the general-
relativistic Lagrangian fop:

Pein) 2 [ do ki) (87)
where the colons denote the normal product of operditofa) and T,s(¢) is the

metric energy—momentum tensor of the fielgk).
The n QFT-operators

Q0p; ) =1 [ do”00aP (06T 002,500 = 85" (7 ()

f do ()q® (XN (x) (88)

of position of the quaS|part|cIe oR(t) observed by means of three spatial coor-
dinate scalar functlorr:;;)D (x), which satisfy the conditions

3°29,q = 0, rank| 3, | =n, (89)

and thus define a point on a given Cauchy hypersurfaee{x € V; 3| X(x) =

const. In the globally statid/s ,, their restrictions on a completely geodesic hy-
persurfacee are just functiong|()(¢) that have been introduced in Section 5. (For

the Cartesian coordinates Hy 3, such an operator was considered by Polubari-
nov, 1973.) Itis easy to see that QFT- opera@?é{cp, } are unique sesquilinear

(in ¢*) Hermitean forms inF, which can be constructed fropr:; 9% £ 9,9,

and do not contain derivatives qg)(x). The QFT-observables introduced above

are evidently sufficient to describe quantum dynamics of a single quasiparticle if
there is no processes of quasiparticle creation and annihilation as in the case of a
globally staticVi p, or if these processes can be neglected. Such dynamics is just
quantum mechanics of a quasiparticle the space of states of which is a subspace
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of F consisting of the vectors

0> % (g, p)5¥2 /{ | GHIPG AL PO (WI0>, (90)

determined by the field configuration
2000 = [ M6 A. eOIze06 A,
{

Obviously{¢|¢) = 1. The QM-observables are determined by the matrix elements
of the introduced QFT-operators between two one-quasiparticle $tatesand

lp2 >

6.3. One-Particle States and Observables

There are infinitely many decompositions (82) and they generate Fock repre-
sentations of the canonical commutation relations of the quantum field which are
unitarily unequivalent in general. The main problem is to distinguish a subspace
@~ in the spaced. of solutions of the field Eq. (81) for which the introduced
formal quantum mechanics of a quasiparticle corresponds to the geodesic motion
in Vi, and, therefore, may be called quantum mechanica pérticle. In the
generalV p, this problem can be solved only as a quasinonrelativistic asymptotic
approximation to the formal scheme, since the formally exact relativistic quantum
mechanics can be constructed only in the globally s¥tic (see below). There-
fore, we take a®~ a spaced; of the following asymptotic irc=2 solutions of

Eq. (81)
h . “
o () =/ ﬂexp(—u%sz(xﬁw(x)w(x). (o1)

The notation here needs detailed explanations.
Sy (X) is a solution of the Hamilton—Jacobi equation

9S0°Sy =1, (92)

which satisfies the initial conditionSg (x)|x =0 and (%(X)d, Sz(x))|s > 0 for
any timelike vector field* (x) directed into the future. Any hypersurfagg(x) =
const, denoted further simply &;is a level surface of the normal geodesic flow
throughX.

¥ (X) is a solution of Schidinger equation

ihc(&“SBa + %us)w(x) = (A" + o(c2-+Y))y(x), (93)

(94)
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2@ det _ N? 1 1 op
HEY S -2 (8500 = ¢ROO + (505909 + (057 ) ). (95)
andh, are differential operators which are determined by certain recurrence re-
lations starting WithHéft) and contain only derivatives along the hypersurf&ce
(“spatial derivatives”).
V| (x) is an asymptotical differential QM-operatatongS

L

- ~ V >
VLX) =14 m—ar + O(c2Y), 96
L(X) + T (Zm@)l + (C ) ( )

where the operatong are determined by the asymptotic relation
def — _ _
{p1, os = (Y1, ¥2)s = /dm/fll/fz +0(c™tHh), p1,92€ . (97)
S

It provides®; with the structure of. 2(S; C; o) andys by the standard Born prob-
abilistic interpretation in each configuration sp&;ee. |¢(x)|? is the probability
density to observe the field configuration which may be called “a particle” at the
point x belonging to the given hypersurfa& At least, this field configuration
satisfies an intuitive idea of what is the quantum particle as a localizable object.
Thus, we have defined the space of states of a particle and can calculate
the asymptotical one-to-one-particle transition probability amplitudes of form
(p110|@2) for the QFT-operators of the observables defined earlier. To this end,
each time when “the time derivativé?* Sv,, appears in calculations, it should
be substituted by the differential operator alo8@f the appropriate order de-
termined by the Scldinger Eq. (93). In effect, this completes the deduction of
guantum mechanics of the particleVa, from quantum field theory in the quasi-
nonrelativistic approximation because we have the matrix elements of observables
of the particle, which were considered in Section 2. However, to compare the
QFT-results with those of the canonical quantization, we need the operator rep-
resentations of the observables as differential operator£(8; C; o). They are
defined up to an asymptotically unitary transformation by the following general
relation:

(@110lg2) = (1, (O)L¥2)s e /Sdm;l(é)uﬁz +0(c ), g, 00 € B

(98)

L A
- def , A (0]
0O). = (O —_—, 99
©0 = O+ gy (99)
whereQ is any of the QF T-operators and, agapare differential QM-operators
along S determined by recurrence relations starting withd. From Eq. (98), it



Quantum Mechanics in Curved Space 493

follows that
(N), =14 O(c™2t+D)y, (100)

For other observables, from Egs. (88), (87), and (99), one has the following non-
relativistic QM-operators for further calculations of relativistic correctichs:
particle position on S

def

the particle momentum along’k= {0, K(i]-)} WhereK(ij) is defined as in Eq. (76)

q¥(x) -1, (101)

R def . o 1 o
(P ™))o = (Pry)o = 'h(K(J)Va + 5V K(j))' (102)
and the particle energy

(E())o = (Pe)olke—cies = HEY. (103)

It is remarkable that not only nonrelativistic expressions for the energy QM-
operator originated by the energy—momentum tefigpand for the Hamiltonian

in the Schodinger equation (93) coincide but also their asymptotic representations
of any orderL areasymptotically unitary equivaleifsee Tagirov, 1999).

6.4. Quantum Mechanics in the Globally Static Space-Time and Deformation
of Canonical Commutation Relations

Pass now to the case of globally sta¥ic, and consider it, as in Sections
2-5, in a system of coordinat¢s®} ~ {t, £} in which wjj (t, &)wij (§). Then, the
asymptotic expansions above can be represented in the formal closed forms

. 20100\ 12 qw _ b
a0 = me((1+ 28 10), A= Fa-cm, oy

o mc
(M) \ —1/4
Voo = (1+ Zr': 82 ) , (105)
A I h ~, -1 i ~ | hA i T ~ -1
(P(j))os(X) = _?Voo : (K(j)Vi) Voo + ?,Voo (K Vi)' - Vg
he -~ . -
— e (€ SV K (1)) Ve (106)
R0 1/2
c(Pas)oo(X) = mcz<1+ mgz > (energy operator), (107)

(@9),. = 6900 + 5%, 0001, V1] (108)
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Recall that we us&, andV; to denote the covariant derivative with respect to the
metric tensorgl,s andwjj respectively.

6.5. QFT-Approach vs. Quantization of Geodesic Motion

What conclusions can be made from the formulae obtained just now compar-
ing them with the results of Sections 2 and 3?

1. They are diffecinvariant iv, andV; , owing to introduction of the func-
tions gg )(x) which were proposed in Section 5 to separate background

coordinates on V, (that is onS) from the coordmateqS in terms of
which a position orfs of the quantum particle is observed.

2. The relativistic Hamiltoniamd & is expressed through the nonrelativistic
one ﬁgﬁ) just by formula (11) and supports the asymptotic meaning of
guantization ofH (p, &), Eq. (7).

3. The nonrelativistic Hamlltonlalh-l( ) is similar to DeWitt's oneH ow)

Eq. (36), but the coefficient before the scalar curvatBrés an arb|—
trary constant in H{ instead of value (1/6) it o(£). As it has already
been said, the latter distinguished valuezaforresponds to the confor-
mal coupling ofp to graV|tat|on but only when = 3. Another interest-

ing difference is thaH ) is an exact expression with no other quantum
potential terms |fc‘1_0 while I:|§,DW)(§') is the quasiclassical approx-
imate expression. This difference is very interesting and poses a ques-
tion: the nondiffeoinvariant part of quantum potential, is it a deficiency
of the quantization of mechanics or is its absence in the QFT-approach
a manifestation of some incompleteness of the canonical quantization
of field?

4. The mostremarkable consequence of the QFT-approach is that the position
operatorscﬁ(')),\, do not commute among themselves except the case of
N = 0 and the same takes place for the momentum oiy@3(. Therefore,
the canonical commutation relations (15) are fulfilled only in the exactly
nonrelativistic case~* = 0 andthe quasi-nonrelativistic commutation re-
lations of primary observables are a deformation of the nonrelativistic
ones An analogous deformation of tte¢3) algebra of the spin 1/2 opera-
tors arises when the QFT-approach is used for the Dirac particles (Tagirov,
1996).

5. The QFT-approach gives at once a quasi-nonrelativistic quantum mechan-
ics in the generaV; , and arbitrary frame reference formed by the normal
geodesic flow through an arbitrary Cauchy hypersurfacén contrast,
quantization of mechanics is formulated earlier only in the globally static
and topologically elementary,, and only in the frame of reference in
which the metric tensor is time independent; this frame is formed by the
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Killing flow. A consecutive formulation in the latter case needs a special
study.

6. Morever, since the theory is formulated actually in terms of matrix elements
of the form (99), it may be applied @, of any topology.

7. The QFT-approach opens a way to formulate quantum mechanics of par-
ticles with nonzero spin, for which there are no classical counterparts.

6.6. Space Quantization in the Friedmann—Robertson—Walker Universe

At last, | like to announce an interesting result obtained in the QFT-approach
for the case of the Friedmann—Robertson—Walker universe and a natural frame of
reference in it, in which

ds? = 2 dt? — b?(t)ay; (¢) dg' d&/, i,j,...=1,2,3 (109)

Letqglto(g) = X0 (&) be the normal Riemannian coordinates which are measured
in the units of the cosmological scale fachgt). In the standard Euclidean vector
notation{ X®, X@, X®} = X (see, for instance, Weinberg, 1972, chap. 13), one
has
k(X - dX)
1— kX2
wherek =1, 0, —1 for the spatially spherical, flat, and hyperspherical universes,
respectively.

Since the space geometry depends on the cosmologicat tithe structure
of quasi-nonrelativistic quantum mechanics and, thus, the notion of a particle are
specified by an initial momeny in which the Cauchy problem for the Sdilinger
equation is posed. In the first nonvanishing ordeZ irf, which isO(C~*) for any
qglto(g) in any V1 n. For the normal Riemannian coordinates, one has in this order

4
[(X0),, (¥9),] = _«%) (x(”% N Y(i)a;)ﬂ)) +0(c®, (110)

whereic = h/2mcis the Compton wavelength of the particle. It is remarkable that
relation (110) is the(3)-part of the basic formula in Snyder’s theory of quantized
Minkowsky space-time (Snyder, 1947):

[57,9] = 1L

@ dg' dg) = (dX)* +

whereL @) are the Lorentz group generatoxg,are the ordinary Cartesian coor-
dinates antp is an elementary length. According to relation (110 space seems

to be quantized in principle in the standard thearith no additional hypothe-

ses, except the case of spatially flat universe k.€.0, and the elementary length

I (to) = (Ac/b(to))Ac depends on the moment of time in which the Schnger rep-
resentation is specified. However, one should remember that a particle specified by
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the momenty has to be sufficiently heavy, the quasi-nonrelativistic approximation

to be valid, and the processes of particle creation and annihilation caused by the
time dependence of the cosmological fadft) to be negligible. To conclude
finally, may the space quantization have at least, a hypothetical physical sense, or,
is it an artefact of the approximation, it is necessary also to estimate contributions
of the next order irt=2 and, in the case df= 1, to take into account singularity

at X? = 1. This author hopes to present such study in future elsewhere.

The most important point is, however, that the deformation of the canonical
commutation relations and, consequently, the space quantization disappear for
any L andtg in the exceptional cade=0, i.e., in the spatially flat universe (see
the general proof in Tagirov, 2000). This fact correlates remarkably with that,
according to the modern astrophysical observational data, the real Universe is
spatially flat with fantastically high accuracy which needs to be explained (the so-
called problem of flatness). Could the last result not to be a quantum—mechanical
reason for the flatness?
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