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Different approaches are compared to formulation of quantum mechanics of a parti-
cle on the curved spaces. At first, the canonical, quasiclassical, and path integration
formalisms are considered for quantization of geodesic motion on the Riemannian con-
figuration spaces. A unique rule of ordering of operators in the canonical formalism and
a unique definition of the path integral are established and, thus, a part of ambiguities in
the quantum counterpart of geodesic motion is removed. A geometric interpretation is
proposed for noninvariance of the quantum mechanics on coordinate transformations.
An approach alternative to the quantization of geodesic motion is surveyed, which starts
with the quantum theory of a neutral scalar field. Consequences of this alternative ap-
proach and the three formalisms of quantization are compared. In particular, the field
theoretical approach generates a deformation of the canonical commutation relations be-
tween operators of coordinates and momenta of a particle. A cosmological consequence
of the deformation is presented in short.

KEY WORDS: quantum mechanics; Riemannian space; geodesic motion; deforma-
tion.

1. INTRODUCTION

Quantum mechanics on the Riemannian geometric background is the sim-
plest part of the fundamental problem of association of general relativity and the
quantum theory. In the quantum mechanics, the problem of definition of appro-
priate physical observables appears in a relatively simple form, which emerges
quite completely in quantization of gravitation (see, for instance, Rovelli, 1999).
On the other hand, the quantum mechanics of a point-like particle may be con-
sidered as a limiting case of the string dynamics. It provides also a description
of interesting physical models such as a motion on homogeneous spaces of some
groups (see, for instance, Grosheet al., 1997; Marinov, 1995). An important point
is that the Quantum Field Theory in curved space-times which is applied success-
fully to describe fundamental processes in the early Universe is based in fact on
some quantum mechanics of a (quasi-)particle, at least, implicitly (see Gibbons
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and Pohle, 1993; Tagirov, 1999). At last, one may expect that a modification of
the well-established fundamental theory, such as quantum mechanics, to a more
general geometrical background can reveal new features of the theory and serve
for better understanding of it.

The problem has a long history related to the names of Podolsky, Dirac,
DeWitt, and other less known theorists. Nevertheless, it has not still a satisfactory
unambiguous solution. The main approach is based on the idea of quantization
of the classical Hamiltonian systems and their generalizations. (In the simplest
expressions, the quantization is a map of a classical theory in terms of the usual
functions on a phase space to a mathematical structure in terms of noncommuting
objects along definite aggregates of rules (formalisms), which depends on a small
parameterh the physical value of which is the Plank constant.)

There is a number of different formalisms of quantization and it is natural to
expect that they give similar results for the same physical system. Unfortunately, it
is not the case even for such an elementary system as the point-like chargeless and
spinless particle if the configuration space is curved. Moreover, as a rule, there are
fundamental ambiguities even in the framework of the same formalism and even
for a simple class of phase spacesP2n∼ Rn⊗Vn whereVn is then-dimensional
Riemannian configuration space.

In the canonical and path integration formalisms, see Sections 2 and 4 re-
spectively; the ambiguities appear in the following two forms. The first one is the
known problem of ordering of operatorsξ̂ i , p̂ j , i , j , . . . = 1, . . . , n, which cor-
respond to the Darboux coordinatesξ i , pj in P2n when they are substituted into
a function f (ξ, p) (say, through a power expansion) to obtain the corresponding
quantum observablêf or the path integral. Generally, there is no leading principle
to single out a certain rule of ordering among infinitely many ones. The ambguity
does not attract much attention in view of that all of the rules lead to the same
operatorf̂ up to an additive constant iff (ξ, p)= f0(ξ, p)+ f1(ξ )+ f2(p), where
f0 is a second-order polynomial of the Darboux coordinatesξ, p and f1, f2 are
appropiate arbitrary functions. The classical Hamiltonians of the typical problems
of the standard quantum mechanics in the Euclidean configuration spaceEn are
in this class if the preferred Cartesian coordinates are taken asξ i . The latter is
usually assumed with no stipulation. The curvilinear coordinates are used, if any,
a posteriori, only as a technical tool, for example, in relation with a symmetry of
the potential. However, even inEn, as soon as curvilinear coordinates are taken
asobservables, i.e., as one half of the phase space coordinates, thenf0 that was
a second-order polynomial in the Cartesian coordinates and their conjugate mo-
menta, fails generally to be a polynomial at all. Respectively, the dependence of
quantization on a choice of ordering becomes actual. In addition, for the path
integration, there is an ambiguity in the choice of the points on a lattice of in-
tegration, in which the integrands are evaluated (see, for instance, D’Olivo and
Torres, 1989; and Section 4 below). It is a common problem for any geometry of
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the configuration space and system of coordinates, again except the case ofEn,
Cartesian coordinates and the quadratic functionf0.

The second ambiguity consists in that the result of such quantization depends
on the choice of coordinatesξ i in Vn, that is not invariant with respect to diffeomor-
phisms ofVn, or,diffeononinvarianteven if a rule of ordering is fixed, although the
original classical theory is diffeoinvariant. Again, in the standard theory, the prob-
lem is obscured by existence of the Cartesian coordinates. It looks as there were
an implicit postulate that quantization should be performed just in these preferred
coordinates. However, what should one do inVn, where the Cartesian coordinates
do not exist at all? An attempt to answer on the question will be given below in
Section 5 on the basis of results of the preceding sections.

According to Bordemannet al. (1998), the deformation quantization in the
framework of the Fedosov formalism (see Fedosov, 1994), leads to diffeoinvariant
quantum mechanics inVn. However, this result is obtained by using a particular
rule of ordering, namely, Weyl’s one. Thus, at least, the ambiguity in ordering
apparently retains.

Geometric quantization in the Blattner–Costant–Souriau formalism (see, for
instance, Abraham and Marsden, 1978;Śniatycki, 1980), is reduced to the quasi-
classical approach by Pauli–DeWitt (Pauli, 1950–51; DeWitt, 1957) for the simple
case under our consideration. The formalism is diffeoinvariant and includes no
ordering procedure, but it is approximate ab initio because it starts with anAnzatz
where the (unknown) quantum propagator is substituted by the quasiclassical one.

Among other approaches to quantization onVn, it is worth to mention the one
based on embeddingVn to an Euclidean space of a greater dimension and using the
Cartesian coordinates in it (Ogawaet al., 1990). And, at last, the present author de-
velops an approach to quantum mechanics of a particle inVn, which is an alternative
to quantization of mechanics and may be called the quantum-field-theoretical one,
or the QFT-approach(Tagirov, 1990, 1992, 1996, 1999). It reproduces quantum
mechanics in the generalV1,n in a diffeoinvariant and ordering-independent form
as the quasi-nonrelativistic asymptotic of a quasi-one-particle sector on an appro-
priate Fock space for the quantized neutral scalar field. (In the paper by Tagirov
[1996], the field of spin 1/2 is considered but the result needs some refinement and
justification along the lines of Tagirov [1999] and Section 6 of the present paper.)
Thus, in this approach, the canonical quantization procedure is shifted from the
particle phase space to the quantiazation of the field. The diffeoinvariant analogs
of the operatorŝξ , p̂ mentioned earlier prove to satisfy a deformation2 of the
canonical commutation relations such that the position operators mutually do not
commute; of course, the conjugate momenta are also mutually noncommutative.

2 The term “deformation” is used very deliberately in the present paper to denote a substitution of
the Poisson or Lie bracket by an asymptotic sum the terms of which are bilinear and antisymmetric
in the same sense as the brackets themselves are; this is only one of the properties of the notion of
deformation used in the mathematically more rigorous texts.
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The deformation parameter isc−2. Just this and other curious results of the approach
stimulated this author’s interest to the state of art in the traditional approaches to
quantum mechanics inVn.

In this paper the three historically first formalisms of quantization, the canon-
ical, quasiclassical ones, and the path integration, will be considered in application
to the geodesic motion in configuration spaceVn with the general time-independent
metric tensorωi j (ξ ). The latter means that thespace-timeis V1,n∼ R1⊗Vn. The
Hamilton operators arising in the three formalisms are compared in a certain ap-
proximation in which they should come to the same Hamilton operator. This condi-
tion distinguishes a unique rule of ordering of the primary observables operators for
the canonical and path integration formalisms and gives an unambiguous prescrip-
tion for the latter. (Along the reasons mentioned earlier, these two formalisms
are considered below as “more exact” ones with respect to the quasiclassical
one.)

We postpone the deformation quantization approach and embedding ofVn for
more serious special consideration though use the general idea on deformation of
the Poisson brackets in a formulation of postulates of canonical operator formalism
in Section 2.

In Section 2, it will be shown that, for the canonical quantization of the
geodesic motion inVn, the freedom in the choice of ordering rules is reduced to a
one-parametric set in each fixed system of coordinates{ξ i }. Since diffeomorphisms
of Vn are determined byn arbitraryC∞-functions, one may say figuratively that
the overall arbitrariness is “1+∞3-dimensional” in this case.

In Section 3, it is shown that the one-dimensional part of the arbitrariness can
be removed by condition of coincidence of the canonical Hamilton operator with
that by DeWitt (1957) in a certain approximation.

In Section 4, the path integral for the quantum propagator of geodesic motion
is constructed so that the phase of the integrand is proportional to the classical action
and the Hamilton operator generating the propagator coincides with DeWitt’s
one in the same approximation, as in the canonical case. This fixes the same
rule of ordering of the primary operators as in Section 3 and unambiguously
determines that the integrands should be evaluated at the nodes of the lattice of
integration.

In Section 5, the obtained solution of the problem of ordering is discussed
and a possible explanation of the diffeononinvariance of the canonical quantum
mechanics inVn is given.

In Section 6, a survey of main results of the above-mentioned QFT-approach
is given and compared with the results of quantization of mechanics.

The paper adopts the so-called heuristic (or, naive) level of mathematical
rigor: many definitions and relations need further refinement to have an exact
meaning. It is expected that the latter can be achieved if physically sensible results
appear at our imperfect level.
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2. CANONICAL QUANTIZATION OF GEODESIC MOTION
IN THE RIEMANNIAN CONFIGURATION SPACE

2.1. Hamilton Theory of Geodesic Motion

To emphasize a relation of the system under consideration to general relativ-
ity, let us start with geodesic lines in the generic (1+ n)-dimensional Riemannian
space-timeV1,n of the Lorentz signature−n+ 1. Let xα, (α, β, . . . = 0, 1,. . . , n)
be some coordinates inV1,n, andt , ξ i , (i , j , . . . = 1, 2,. . . , n) be normal Gaus-
sian coordinates generated by the normal geodesic translation of a given Cauchy
hypersurface6≡6(t0) and some coordinatesξ i on it. The metric form is

ds2 = gαβ dxα dxβ

= c2 dt2− ωi j (t, ξ ) dξ i dξ j t ∈ [t0, t1]. (1)

(The range where the coordinatest, ξ i and the representation of the metric (1) are
valid is indicated, for instance, by Destriet al. (1994, Section 2).)

The space-time geodesic lines are extremalsxα = xα(s) of the action func-
tional

W = −mc
∫ s2

s1

ds

√
gαβ

dxα

ds

dxβ

ds
def=

∫ s2

s1

L ′ ds=
∫ t2

t1

L dt, (2)

which satisfy the following constraint:

gαβ(x)pα pβ = m2c2, (3)

wherepα are the generalized momenta

pγ (s)
def= dL′

d(dxγ /ds)
= −mc

(
gαβ

dxα

ds

dxβ

ds

)−1/2

gγ δ
dxδ

ds
. (4)

The canonical quantization as a mapQ of functions on a phase spaceP =P2n+ 2∼
T∗V1,n to operators acting on a Hilbert spaceH (see a more exact definition below)
can be applied to this diffeoinvariant system with constraint (3). However, it would
be a map on operators acting on the space3 H∼ L2(V1,3;C;

√
gd4x) which cannot

be interpreted as a space of states of a real particle specified by a position in the
configuration space (see Tagirov, 1999). For the standard probability interpretation
in the Schr¨odinger representation, the operators of observables should be defined
on L2(6;C;

√
ωdnx). It is realized by quantization of the reduced Hamiltonian

3 Here and further the spacesL2(V1,3) and L2(Vn) are defined with respect to the natural measures
induced by the corresponding Riemannian metric forms. This allows to consider the functions from
these spaces as scalars with respect to the diffeomorphisms inV1,n andVn. If there were no metric, a
more complicate construction with a class of the equivalent Lebesgue measures on the configuration
space and the half forms instead of the scalars should be used (see Abraham and Marsden, 1978,
p. 427).



P1: GAD

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465832 June 17, 2003 11:15 Style file version May 30th, 2002

470 Tagirov

system in which one solves the constraint (3) at the classical level. To this end,
one represents (3) in the form(

p0+mc

√
1+ 2H0

mc2

)(
p0−mc

√
1+ 2H0

mc2

)
= 0 (x0 ≡ ct), (5)

where

H0 ≡ H0(ξ, p; t)
def= 1

2m
ωi j (ξ ; t)pi pj . (6)

For the nonradiating and spinless particle (just only it moves along a geodesic line
in the Riemannian space-timeV1,n), we shall take, as usually, the solution of 5
with respect top0 such thatp0 > 0. Then, in the theory with the constraint thus
resolved, the Hamilton function will be

H (ξ, p) = mc2

√
1+ 2H0

mc2
. (7)

There is an interesting intermediate approach of Gitman and Tyutin (1990) in
which both the solutions of constraint (5) are used (inE1,3) through introduction
of a special observable “the sign ofp0.” This leads to a state space consisting
of two L2(E1,3;C; d3x), {xi } ∈ E1,3, which describe particles and antiparticles re-
spectively (being neutral, they are identical). Gavrilov and Gitman (2001) have
extended the approach to the case ofV1,3. However, a remark arises concerning
this work, which will be made at the end of the present section, near the formula
(29).

The nonreduced and reduced formalisms differ in that, in the former case,
a time-like coordinatex0 is included to the set of observables whereas, in the
latter case, the variablet is an evolution parameter. In the classical theory, these
formalisms are physically equivalent versions of the same theory; however, quan-
tization of them leads to different theories.

In the reduced formalism, observables for fixedt are functions on the phase
spaceP2n∼ T∗6(t), the cotangent bundle over6(t). They may be considered
locally as functions of Darboux coordinatesξ i , pj , with {ξ i } ∈6(t) and

pk = mcωkl(t, ξ )ξ̇ l√
c2− ωi j (t, ξ )ξ̇ i ξ̇ j

. (8)

Of course, the Darboux coordinates fixed by a choice of coordinatesξ i on6(t) are
observables, too. They form the so-calledprimary observablesin the sense that
other observables are functions of them.
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2.2. General Concept of Canonical Quantization

Consider now the concept of quantization of a classical Hamiltonian sys-
tem. A general definition of the asymptotical quantization can be found in the
book by Karasev and Maslov (1991, chap. IV). We shall adopt the following
simplification of the deformational version of this definition. (The simplification
consists in that the deformed Poisson brackets are supposed in condition (Q2)
below instead of the usual definition which starts with a∗ -product of symbols of
operators.)

Let s2n be an appropriate subalgebra of the Poisson algebra of functions
f ∈C∞(P2n).

Quantizationis a map

Q : s2n 3 f
Q→ f̂ (operators in a Hilbert spaceH), (9)

satisfying the following conditions:

(Q1) 1
Q→ 1̂ (the identity operator inH);

(Q2) { f, g}h Q→ ih−1[ f̂ , ĝ]
def= i h−1( f̂ ĝ− ĝ f̂ ) where { f, g}h≡{ f, g}0+O(h)

is an antisymmetric bilinear functional off andg and{ f, g}0≡{ f, g} is the
Poisson bracket inP2n;

(Q3) ˆ̄f
Q→ ( f̂ )† (the Hermitean conjugation of̂f with respect to the scalar product

inH);
(Q4) a complete set of functions (maximal Abelian subalgebra)f (1), . . . , f (n):

f (i ) ∈ s2n, is mapped to a complete set (in the sense by Dirac (1948, chap. III)
of commuting operatorŝf (1), . . . , f̂ (n).

It follows also from the condition (Q4) and the Stone-Von Neumann theorem
thatH∼ L2(6;C;

√
ωdnx).

The main problems of quantization consist in an infinite number of possi-
bilities to construct the functional{ f, g}h (deformation of the Poisson bracket),
in difficulties with construction of a complete set on the topologically nontriv-
ial spacesP2n and in diffeononinvariance of quantum observables. Here we have
a simple and physically oriented purpose to consider traditional procedures of
quantization in application to a particular elementary system on a class of simple
but nontrivial geometric backgrounds. Therefore, the following restrictions on the
system and spacesV1,n andVn under consideration will be supposed.

(V1) Assume thatV1,n is a globally static space-time and6(t)∼Vn are its com-
pletely geodesic sections that exist in this case. It means thatωi j (ξ, t)≡
ωi j (ξ ). Then, the classical dynamics with the Hamilton functionsH andH0

are equivalent and refer only to different systems of reference.
(V2) Our main purpose is to construct a quantum image of the Hamilton function

(classical Hamiltonian)H0 for an arbitraryωi j (ξ )∈C∞(Vn) starting with
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the general scheme of quantization (Q1)–(Q2). The minimal algebras2n

containing all such Hamiltonians is the algebra of polynomials inpi with
the coefficients depending onξ i . If a nonrelativistic quantum Hamiltonian
Ĥ0 is constructed, then a possible way to obtain a relativistic oneĤ is
provided by the Von Neumann rule (Von Neumann, 1955, p. 313) defining
functions of commuting operatorŝA1, . . . , ÂN :

f (A1, . . . , AN)
Q→ f̂

de f= f (Â1, . . . , ÂN). (10)

Being applied to the classical Hamiltonian (7) interpreted in the asymptotical
sense, it gives

Ĥ (H0) = H (Ĥ0)
def= Ĥ0− 1

mc2
Ĥ2

0+
1

2m2c4
Ĥ4

0− · · · . (11)

(V3) Assume that the topology ofVn is trivial; of course, it does not mean that
the curvature ofVn along the metricωi j is zero. The physical meaning of
this condition may not be considered as a restriction on the topology but as
localization of the quantum particle in a sufficiently small domain so that
only local manifestations of the space curvature are essential.

(V4) In virtue of the preceding assumption, it is supposed that the coordinate
linesξ i on Vn are complete and open. In this sense, they are similar to the
Cartesian coordinates.

By the way, under assumptions (V1)–(V4), there are no QFT process of
creation and annihilation of particles by the external gravitational field, and the
quantum dynamics becomes a purely quantum–mechanical one.

The canonical quantizationmeans here the following realization ofQ:

(CQ1) One takes some coordinatesξ i satisfying (V4) as a complete setf (1), . . . , f (n)

in the condition (Q4).
(CQ2) One takes, at first, the algebra of polynomials in the Darboux coordinates

ξ i , pj as the algebras2n.
(CQ3) One imposes the following conditions on the functional{ f, g}h:

{ξ i , ξ j }h = {ξ i , ξ j }0≡{ξ i , ξ j } = 0, (12){
ξ i , pj

}
h
= {ξ i , pj

}
0≡

{
ξ i , pj

} = δi
j , (13)

{pi , pj }h = {pi , pj }0≡{pi , pj } = 0, (14)

thus making the condition (Q2) more definite.
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(CQ4) Then, the quantum imagesξ̂ i , p̂ j of these primary classical observables
should satisfy the canonical commutation relations

[ξ̂ i , ξ̂ j ] = 0, [ξ̂ i , p̂ j ] = ihδi
j , [ p̂i , p̂ j ] = 0. (15)

and may be realized as differential operators4

ξ i Q→ ξ̂ i = ξ i · 1̂, pi
Q→ p̂ j = −ih

(
∂ j + 1

4
∂ j lnω

)
. (16)

in L2(6(= Vn);C;
√
ωdnξ ).

(CQ5) Further, one maps the basis ofs2n formed by the unity and monomials

(ξ1)M1 . . . (ξn)Mn(p1)N1 . . . (pn)Nn (17)

onto the identity operator̂1 and hermitizations of the same monomials
formed by operatorŝξ i , p̂ j along a chosenrule of ordering(a Hermitean
arrangement of the operators in each monomial). As usual, the rule deter-
mines the functional{ f, g}h in the quantization condition (Q2) via com-
mutation of the operators thus obtained, although it is not known to the
present author if any rule determines the functional.

(CQ6) The functional{ f, g}h fixed by a rule of ordering is taken further as the
general relation (Q2) for anyf (ξ, p), g(ξ, p)∈C∞(P2n) in view of the
density of the polynomials inC∞ (see Berezin and Shubin, 1984).

In general, there are infinitely many possible rules of ordering and a classifi-
cation of them, apparently not exhausting, is given by Agarwal and Wolf (1970).

TheWeyl rule(Weyl, 1931) is the most popular one in the literature. It has some
attractive symmetry properties (see, for instance, Mehta, 1964). For the particular
case under consideration, it may be described as follows. Consider, for example,
the following product (̂p1)a(ξ̂1)b, a≥ 0, b≥ 0 of noncommuting operators. Then,
the Weyl ordering ((̂p1)a(ξ̂1)b)(w) of the product is determined by the following
relation (Berezin and Shubin, 1984, chap. 5):

(Ap̂1+ Bξ̂1)N =
∑

a+b=N

N!

a!b!
Aa Bb

(
( p̂1)a(ξ̂1)b

)(W)
. (18)

If one takes the Weyl ordering, then the functional{ f, g}h def= { f, g}(W)
h is the Moyal

bracket (Moyal, 1949). Taking into account the Riemannian measure on6 and
condition (V3) on coordinatesξ , one can represent the canonical quantization of

4 It is well-known that the operatorŝξ i , p̂ j are symmetrical (we shall callHermitean) but not self-adjoint
ones inL2(Vn;C;

√
ωdnξ ). A consecutive solution of this problem is achieved by introducing the

rigged Hilbert space (see, for instance, Sudbery, 1986). Here, we shall adopt a more simple assumption
that only an appropriate dense subset inL2(Vn;C;

√
ωdnξ ) is under consideration.
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the polynomialsf (ξ, p) via the Weyl ordering as follows (Berezin and Shubin,
(1984, chap. 5):

f (p, ξ )
Q→ ( f̂ (W)ψ)(ξ ) = (2πh)−nω−

1
4 (ξ )

×
∫

dnξ ′ dn p exp

(
− i

h
(ξ i − ξ ′i )pi

)
f

(
p,
ξ + ξ ′

2

)
×ω 1

4 (ξ ′)ψ(ξ ′), ψ(ξ ) ∈ L2
(
6;C;

√
ωdnξ

)
. (19)

Further, in view of the mentioned density of the polynomials inC∞(P2n≡ Rn⊗
Vn), this correspondence is adopted as a general definition of the canonical quan-
tization of f (p, ξ )∈C∞(P2n).

Another example isthe Rivier rule of ordering(Mehta, 1964; Rivier, 1957)
which, in application to a monomial (17), is the following arrangement of the
primary observables:

(ξ1)M1 · · · (ξn)Mn(p1)N1 · · · (pn)Nn
Q→ 1

2

(
(ξ̂1)M1 · · · (ξ̂n)Mn( p̂1)N1 · · · ( p̂n)Nn

+ ( p̂1)N1 · · · ( p̂n)Nn(ξ̂1)M1 · · · (ξ̂n)Mn
) def= ((ξ̂1)M1 · · · (ξ̂n)Mn( p̂1)N1 · · · ( p̂n)Nn

)(R)
.

(20)

Similarly to the Weyl ordering, it can be represented in the form,

f (ξ, p)
Q→ ( f̂ (R)ψ)(ξ ) = (2πh)−nω−

1
4 (ξ )

×
∫

dnξ ′ dn p exp

(
− i

h
(ξ i − ξ ′i )pi

)
f (ξ, p)+ f (ξ ′, p)

2

×ω 1
4 (ξ ′)ψ(ξ ′), ψ(ξ ) ∈ L2(Vn;C;

√
ωdnξ ), (21)

which is obtained as the half-sum of the integral representations ofqp- and pq-
orderings given by Berezin and Shubin (1984, chap. 5). Again, the rule (21) is
extended to allf (ξ, p)∈C∞(P2n). To the Rivier ordering, its own “bracket” cor-
responds in the condition (Q2), which may be denoted as{ f, g}(R)

h .
Rewrite (19) and (21) in a compact form(

f̂ (W)ψ
)
(ξ ) =

∫
dnξ ′K (W)

f (ξ ; ξ ′)ψ(ξ ′)

and (f̂ (R)ψ)(ξ ) =
∫

dnξ ′K (R)
f (ξ ; ξ ′)ψ(ξ ′). (22)

It is obvious that the kernels of the form

K (ν)
f (ξ, ξ ′)

def= νK (W)
f (ξ, ξ ′)+ (1− ν)K (R)

f (ξ, ξ ′) (23)
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define an ordering for any fixed value of the real parameterν, too, and, in general,
there are many other possibilities of such linear combinations.

2.3. Quantization of Geodesic Motion

It is the time now to return to the concrete system we intend to quantize,
namely, the system described by the Hamilton functionH0(ξ, p). An important
point is that we apply the Von Neumann rule (10) to the metric tensorωi j (ξ ):

ωi j (ξ )
Q→ ω̂ ≡ ωi j (ξ̂ ) = ωi j (ξ ) · 1̂. (24)

Suppose also thatoperatorsof the form(
∂i1 . . . ∂̂i Mω

i j (ξ )
)
, M > 0,

should not appear in the canonical Hamilton operatorĤ0, which we are looking
for. It does not mean that the representation ofĤ0 as a differential operator in
L2(Vn;C;

√
ωdnξ ) should not containfunctionsof the form∂i1 · · · ∂i Mωi j (ξ ). Then,

it is easy to see that all possibilities to choose rules of ordering for quantization
along the scheme (CQ1)–(CQ2) are reduced to a one-parametric family (23).
Simply speaking, the possible orderings are all those Hermitean arrangements
of the operatorsp̂i ω̂

jk , which reproduce the classical HamiltonianH0 under
assumption that the operators commute and thus satisfy to the Correspondence
Principle. However, if, for example, a system with a classical Hamiltonian of
the formλi jkl (ξ )pi pj pk pl were considered the one-parametric family of kernels
(23) would not exhaust all possible orderings. The latter would form apparently a
two-parametric family and, thus, the ambiguity became larger.

Quantization ofH0 along the rule (23) gives the following correspondence
after use of (19) and (21):

H0(q, p)
Q→ Ĥ (ν)

0 =
2− ν
8m

ωi j (ξ̂ ) p̂i p̂ j + ν

4m
p̂iω

i j (ξ̂ ) p̂ j + 2− ν
8m

p̂i p̂ jω
i j (ξ̂ ).

(25)

Substituting here representations (16) of the primary operators, one obtainsĤ (ν)
0

as a differential operator inL2(Vn;C;
√
ωdnξ )

Ĥ (ν)
0 = −

h2

2m
1(ω)(ξ )+ V (ν)

q (ξ ), (26)

where1(ω) is the Laplace–Beltrami operator forVn,

V (ν)
q (ξ ) = − h2

4m

(
∂i (ω

i j γ j )+ ν
2
∂i ∂ jω

i j + 1− ν
2

ωi j γi γ j

)
(27)
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is the so-calledquantum potentialand

γi
de f= γ

j
i j , γ k

i j
de f= 1

2
ωkl(∂iω j l + ∂ jωi l − ∂lωi j ) (28)

are the Christoffel symbols. Contrary to the kinetic term̂H (kin)
0

def= −(h2/2m)
1(ω)(ξ ), the quantum potential is not diffeoinvariant. In the generic case, there
is no choice of coordinatesξ for which V (ν)

q (ξ )≡ 0 in a domain; it is easily seen
from consideration of the integrability condition of the equationV (ν)

q = 0. In this
sense, the quantum potential distinguishes no preferred coordinate system. This
dependence of the quantum dynamics on coordinate systems can be called appar-
entlya quantum anomaly of diffeomorphisms of the configuration space.

Thus, the arbitrariness in construction of quantum mechanics of a particle
in V1,3 is contained in the quantum potentialV (ν)

q in the form of its dependence
on the parameterν and on a choice of coordinatesξ i . This arbitrariness is not
trivial because it leads to Hamilton operators with different spectra. Some authors
eliminate it “by hand” setting simplyĤ0≡ Ĥ (kin)

0 . Just so Gavrilov and Gitman
(2001) do in fact. They consider the spaceL2(Vn;C; dnξ ) and take there aŝH0 (in
their own notation) the operator

Ĥ (GG)
0 = 1

2m
ω̂−

1
4 p̂i ω̂

1
2 ω̂i j p̂ j ω̂

1
4 ≡ − h2

2m

√
ω1(ω), (29)

which is equivalent toH (kin)
0 ; here, of course, ˆωi j ≡ωi j (ξ ) · 1̂. The correspondence

principle is evidently satisfied: if one assumes thatξ̂ and p̂ commute then he
comes toH0. A problem, however, is to go a way in the reverse direction and to
obtain the rule (29) as a Hamilton operator along a more or less well formulated
quantization formalism. Representation (29) can be found in the paper by DeWitt
(1957) but namely as the kinetic part of the total Hamilton operator which includes
also a quantum potential. A brief exposition of this result and its application
for elimination of the ambiguity of the canonical quantization described by the
parameterν will be given in the following chapter.

3. QUASICLASSICAL QUANTIZATION OF GEODESIC MOTION

3.1. Dewitt’s Hamiltonian and Riemannian Coordinates

DeWitt (1957) generalized toVn the WKB-propagator proposed by Pauli
(1950–51) for a particle in the electromagnetic field in E1,3. As a result, the fol-
lowing nonrelativistic propagator was obtained:

〈ξ, t |ξ0, t0〉 = ω−1/4(ξ )D1/2(ξ, t |ξ0, t0)ω−1/4(ξ ) exp

(
− i

h
S(ξ, t |ξ0, t0)

)
, (30)
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whereD is the Van Vleck determinant (Van Vleck, 1928)

D(ξ, t |ξ0, t0)
def= det

(
−∂

2S(ξ, t |ξ0, t0)

∂ξ i ∂ξ
j

0

)
, (31)

and

S(ξ, t |ξ0, t0) =
∫ t

t0

1

2
ωi j (ξ, t)ξ̇ i ξ̇ j , ξ0

def= ξ (t0) (32)

is the classical action; its minimum is provided by the following equation of motion:

ξ̈ i + γ i
kl(ξ ; t)ξ̇ kξ̇ l + ωik(ξ ; t)

∂ωkl

∂t
(ξ ; t)ξ̇ l = 0. (33)

If ∂ωkl(ξ ; t)/∂t = 0, that is, if V1,n is the globally static space-time and6(t)∼
6(t0)∼Vn is a completely geodesic hypersurface, then (33) is the geodesic equa-
tion in Vn. Restrict our consideration to this simple case, the more so that DeWitt
does, in fact, the same.

Considering the limitt→ t0(ξ→ ξ0) along the geodesic line, connectingξ
andξ0, DeWitt comes to the equation

ih
∂

∂t
〈ξ |ξ0〉 + h2

2m

(
1(ω)(ξ )− 1

6
R(ω)(ξ )

)
〈ξ |ξ0〉 = o(ξ − ξ0))〈ξ |ξ0〉, (34)

whereR(ω) is the scalar curvature for the metricωi j ; the Riemann–Christoffel and
Ricci tensors being defined as follows:

Ra
(ω)bcd = ∂dγ

a
bc− ∂cγ

a
bd + γ a

deγ
e
bc− γ a

ceγ
e
bd, R(ω)i j = Rk

(ω)ik j . (35)

(DeWitt’s definition of R(ω)i j has an opposite sign.) It follows from (34) that the
differential operators

Ĥ (DW)
0 (ξ ) = − h2

2m

(
1ω(ξ )− 1

6
R(ω)(ξ )

)
, (36)

can be considered as the Hamilton operator on the subspace of the wave functions
(initial data for the Schr¨odinger equation)

〈ξ |ξ0〉 ≡ ψξ0(ξ ) ∈ L2(Vn;C;
√
ωdnξ ),

which are localized in a small neighborhood of the pointξ0 in the sense that they
satisfy the condition

(ψ, o(ξ − ξ0)ψ)(
ψ, Ĥ (DW)

0 ψ
) ¿ 1, (37)

whereo(ξ − ξ0) is a residual term in the right-hand side of (34). Thus, the approach
exposed which is relevant to call the quasiclassical one gives, in the mentioned
approximatesense, a unique and diffeoinvariant Hamilton operator.
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At the same time, DeWitt and some other authors considered the appearance of
the potential (h2/12m)R(ω)(ξ ) as an unfavorable phenomenon because traditionally
Ĥ (kin)

0 was taken as the Hamiltonian of the particle inVn. They added an appropriate
counterterm into the Lagrangian, that is into the integrand in formula (32), to have
Ĥ (kin)

0 instead ofĤ (DW)
0 in Eq. (34). However, the corrected Lagrangian is not the

one of geodesic motion of which quantization is the matter of the present paper.
Actually, the appearance ofR(ω) in the Hamiltonian is quite in conformity with
the QFT-approach (Tagirov, 1999) a brief exposition of which will be given in
Section 6.

3.2. Comparison of Canonical and Dewitt’s Hamiltonians

Now, let us compare the Hamiltonian̂H (ν)
0 , obtained exactly in the canonical

sense and the approximate quasiclassical oneĤ (DW)
0 . Remind that the latter was

obtained by retracting the pointξ to ξ0 along a geodesic lineconnecting them.
Thus, a position ofξ with respect toξ0 is naturally defined by the geodesic distance
s(ξ, ξ0) between them and the tangent vector (dξ i /ds)0 to the geodesic line atξ0.
These quantities formthe Riemannian coordinates

yi (ξ )
def= s(ξ, ξ0)

(
dξ i

ds

)
0

(38)

with the origin at the pointξ0. In these coordinates the metric tensorωi j , its
derivatives byyi and, respectively, the Christoffel symbolsγ i

kl are represented
as a power series inyi , coefficients of which are polynomials in powers of the
components of the Riemann–Christoffel tensor and of its covariant derivatives
taken at the originyi = 0, i.e., atξ0. Therefore, applying the Veblen method of affine
extensions (Veblen, 1927) using contracted Bianchi identities, one can represent
the quantum potentialV (ν)

q as a similar series. For our discussion, the following
two terms of the series are sufficient:

Ĥ (ν)
0 (y) = − h2

2m

(
1(ω)(y)− ν

12
R(ω)

∣∣∣∣
y= 0

− ν

12

(
∂i R(ω)

)∣∣∣∣
y= 0

yi + O((y)2)

)
.

(39)
The condition of coincidence of̂H (ν)

0 (y) with Ĥ (DW)
0 in the zero-order approxi-

mation is satisfied for the valueν= 2 in (23) and (25). Thus, from the canonical
point of view adopted here,the correct nonrelativistic Hamilton operatorfor a
point-like particle in the globally staticV1,n is the following remarkably simple
expression:

Ĥ (2)
0 =

1

2m
p̂iω

i j (ξ̂ ) p̂ j . (40)
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This solves the ambiguity problem of ordering of the primary operators in the
canonical quantization of the geodesic motion. However, the problem of diffenon-
invariance of quantum potentialV (2)

q retains. This problem, as well as the problem
of ordering for the Hamiltonians which are not quadratic in momenta, will be
discussed in Section 5. And now we pass to a justification of the obtained re-
sult coming from consideration of another traditional approach to formulation of
quantum mechanics.

4. QUANTIZATION OF GEODESIC MOTION BY PATH INTEGRATION

4.1. Relation Between Canonical and Path Integration Formalisms

Not only the point-like particle motion but also a number of other mechanical
problems are naturally represented as a geodesic motion or its generalization in
someVn. Usually, the latter are homogeneous spaces of symmetry groups (see,
for instance, Grosheet al., 1997; Marinov, 1995; and references therein). For this
class of systems, the Feynman formalism of path integrals is considered as a very
appropriate approach to solve the Schr¨odinger equation for the particle propagator
since it takes into account the metric of the configuration space through a natural
measure and representation of the virtual path as consisting of small segments of
geodesic lines.

In this approach, the path integral relates a given quantum HamiltonianĤ0

represented as a differential operator inL2(Vn;C;
√
ωdnξ ) to some effective clas-

sical Lagrangian (Marinov, 1995). The Hamiltonian may be considered as a result
of quantization of the classical dynamics described by the Lagrangian so found. An
inverse problem can be posed: to selectĤ0

def= Ĥ (F)
0 (the superscript (F) denotes

“Feynman” as will be clear a bit below) so that the effective Lagrangian would
prove to be the classical one for the geodesic motion:

Leff(ξ, ξ̇ ) = Lcl(ξ, ξ̇ ) ≡ m

2
ωi j (ξ )ξ̇ i ξ̇ j . (41)

A correspondenceH0→ Ĥ (F)
0 thus defined and taken together with the map (16) of

the primary observables may be calledthe Feynman quantizationof the geodesic
motion inVn. Consider such an approach in a brief descriptive form sufficient for
a comparison with the formalisms considered earlier.

So, a problem is to represent, as a path integral, the following formal propa-
gator inVn

K(ξ ′′, t ′′|ξ ′, t ′)= 〈ξ ′′|e− i
h (t ′′−t ′)Ĥ0|ξ ′〉, (42)

for the quantum Hamiltonian of the form

Ĥ0 = − h2

2m
1ω(ξ )+ V(ξ ), (43)
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acting inL2(Vn;C;
√
ωdnξ ). Here we consider as an already-established fact that

the set of the possible (nonrelativistic) Feynman HamiltoniansĤ (F)
0 a particle in

Vn is contained among Hamiltonians (43) with arbitrary potentialsV(ξ ).
Following the line of calculations by D’Olivo and Torres (1989), divide the

time interval [t ′, t ′′] by N→∞ intervals of infinitesimal durationε= (t ′′ − t ′)/N
and representK(ξ ′′, t ′′|ξ ′, t ′) as follows:

K(ξ ′′, t ′′|ξ ′, t ′) = lim
n→∞

∫ N−1∏
I=1

√
ω(ξI )d

nξI

N−1∏
j=1

〈
ξI |e−

i
h ε Ĥ0|ξJ

〉
, (44)

whereξ0= ξ ′, ξN = ξ ′′.
To calculate the matrix elements of̂H0 in the configuration representation,

one should represent the differential operator1ω(ξ ) in (43) throughξ̂ , p̂. To this
end,a rule of ordering of themshould be fixed. Contrary to D’Olivo and Torres
(1989), who, as many other authors on the matter, adopted the Weyl rule, we use
a more general rule (23). Then, we have

Ĥ0 = Ĥ (ν)
0 − V (ν)

q (ξ )+ V(ξ ), (45)

whereĤ (ν)
0 andV (ν)

q (ξ ) are assumed to be expressions (25) and (27) respectively.
Calculation of the matrix elements within the terms linear inε using our generalized
rule of ordering gives

K(ξ ′′, t ′′|ξ ′, t ′) = lim
N→∞

∫ (
1

2π ihε

)πN/2 N−1∏
I=1

√
ω(ξI ) dnξI

×
N−1∏
J=1

( ˜√ω)
(ν)

(ξJ−1, ξJ)

[ω(ξ j )ω(ξ j−1)]1/4
exp

{
i

h
ε L̃ (ν)

eff

(
ξJ−1, ξJ ;

1ξJ

ε

)}
,

1ξJ ≡
{
1ξ i

J
de f= ξ i

J − ξ i
J−1

}
. (46)

Here (
√̃
ω)(ν)(ξJ−1, ξJ) and L̃ (ν)

eff (ξJ−1, ξJ ,1ξJ/ε) are the quantities that are ex-
pressed, respectively, through the functions

√
ω(ξ ) and

L (ν)
eff

(
ξ,
1ξJ

ε

)
def= Lcl(ξ,1ξJ/ε)− V(ξ )+ V (ν)

q (47)

along the following general rule implied by Eq. (23):

f̃ (ν)(ξJ−1, ξJ) = ν f (ξ̄J)+ 1− ν
2

( f (ξJ−1)+ f (ξJ)), ξ̄J
def= 1

2
(ξJ + ξJ−1).

(48)
Now, the product inJ in Eq. (46) should be represented as a product of

exponentials of some classical action on the intervals [ξJ−1, ξJ ], that is as a product
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of factors of the form

exp

{
i

h
εL ′eff(ξ

′
J ,1ξJ/ε)

}
, (49)

where, in the exponent, the value of some effective LagrangianL ′eff(ξ, ξ̇ ) (in gen-
eral, it differs fromL (ν)

eff ) stands, which is taken at the pointξ ′J ∈ [ξJ−1, ξJ ] remained
arbitrary for a time being.

To obtain the representation, all functions ofξJ−1, ξJ , ξ̄J under the product in
J should be expanded into the Tailor series near the pointξ ′J up to terms quadratic
in 1ξJ , since only such terms contribute to the integral Eq. (46). Further, one
should include the contribution of the preexponential factor to the exponent in a
form of an additional quantum potential. Consider this procedure separately for
the two principally different cases.

(A) The intermediate point evaluation of the integrands:ξ ′J = (1−µ)ξJ−1+
µξJ , 0< µ< 1, i.e.,ξ ′J ∈ (ξ j−1, ξ j ).

(B) The endpoint evaluation of the integrands:ξ ′ = ξJ−1 or ξ ′ = ξJ , i.e., ξ ′

is taken at the ends of the closed interval [ξJ−1, ξJ ].

4.2. Quantum Potential for the Intermediate Point Evaluation
of Integrands (Case A)

For the generic function (48), one has

f̃ (ν)(ξJ−1, ξJ) = f (ξ ′J)+
(

1

2
− µ

)
∂i f (ξ ′J)1ξ i

J

+ 1

2

(
2− ν

4
− µ+ µ2

)
∂i ∂ j f (ξ ′J)1ξ i

J1ξ
i
J . (50)

Apply this general formula tof (ξ )≡ L (ν)
eff (ξ,1ξ/ε). The last term in Eq. (50) turns

out to be equal to

1

2

(
2− ν

4
− µ+ µ2

)
∂i ∂ jωkl(ξ

′
J)1ξ i

J1ξ
j
J

1ξ l
J

ε

1ξ k
J

ε
(51)

in the necessary order ofε.
Further, we use the result by McLaughlin and Schulman (1971) according to

which the following substitution can be made under the integration in Eq. (46):

1ξ i
J1ξ

j
J → iε

h

m
ωi j (ξ ′J). (52)
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After this substitution in Eq. (51) and symmetrization of the resulting expression
in indexesi , j , k, l , one comes to the quantum potential

V (ν;µ)
L (ξ ′J ; ν;µ) = − h2

12m

(
2− ν

4
− µ+ µ2

)(
∂i ∂ jωkl(ω

i j ωkl + 2ωikω j l )
)
(ξ ′J),

(53)
in addition toL (ν)

eff (ξ
′
J ,1ξJ/ε). Another additional term here,

i

(
1

2
− µ

)
h

3
∂iωkl(ξ

′
J)

(
ωkl(ξ ′J)

1ξ i
J

ε
+ 2ωik(ξ ′J)

1ξ l
J

ε

)
, (54)

comes from the second term in Eq. (50) after the use of the same substitution (52).
It adds toL (ν)

eff , a term which is proportional to1ξ i /ε∼ ξ̇ i that is linear in the
velocity. There is no such term inLcl and there is nothing to compensate it so
that the condition (41) were satisfied. Indeed, the logarithm of the preexponential
factor

Ä̃J =
(√̃
ω
)(ν)

(ξJ−1, ξJ)

[ω(ξJ)ω(ξJ−1)]1/4
(55)

does not contain a term linear inεξ̇ : whenε→ 0:

Ä̃J = 1−
(
ν

8
∂i ∂ j lnω(ξ ′J)−

(
3− ν

32
− µ

4
+ µ

2

4

)
∂i lnω(ξ ′J)∂ j lnω(ξ ′J)

)
1ξ i1ξ j

+O((1ξ )2) ≡ Ä(ξ ′J , ν;µ). (56)

Therefore, to avoid appearance of a term proportional to the velocity inLeff, one
should take

µ = 1

2
, (57)

i.e., ξ ′J = ξ̄J , as it is taken by D’Olivo and Torres (1989), who adopt the Weyl
ordering (formula (48) forν= 1) from the beginning.

Taking into account the condition (57) and the substitution (52), one can
reduce the contribution of̃Ä into the path integral (46) to that one more quantum
potentialV (ν)

Ä is added toL (ν)
eff in the exponent of the exponential:

V (ν)
Ä (ξ ) = − h2

2m
ωi j (ξ )

(
ν

8
∂i ∂ j lnω(ξ )−

(
1− ν

32

)
∂i lnω(ξ )∂ j lnω(ξ )

)
+ O(ε2).

(58)
As a result, if one chooses in the initial formula (43)

V(ξ ) ≡ V (F ;ν)
A (ξ )

def= Vq(ξ )+ V (ν)
L (ξ )+ V (ν)

Ä (ξ )

= − h2

24m

(
2ν + 7

2
ωi j ωkl − (5− 2ν)ωikω j l

)
∂i ∂ jωkl
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+ h2

4m

(
ν + 2

4
ωkmωlnωi j − ν − 2

4
ωimω jnωkl − (ν − 2)ωimωknω j l

)
× ∂iωmm∂ jωkl , (59)

then, in the integrand of the path integral, only the following product remains in
the required approximation

N−1∏
J=1

exp

{
iε

h
Lcl(ξ̄ j )

}
, (60)

that is a product of exponentials of the ratio of the classical action of the geodesic
motion between the pointsξJ−1 andξJ to the Planck constanth.

Thus, we have determined a mapH0→ H (F;ν)
0A of the Hamilton function of

the geodesic motion inVn on operator (43) with quantum potential (59) is a ver-
sion acting onL2(Vn;C;

√
ωdnξ ) is a version of the Feynman quantization of the

geodesic motion inVn. It is not diffeoinvariant as well as contains freedom in the
choice of the value of parameterν corresponding to arbitrariness of the ordering
rule in the canonical quantization. Could one selectν so thatV (F;ν)

A (ξ ) would co-
incide with the result of the quasiclassical quantization (36) in the region where
such comparison is relevant, i.e., in a neighborhood of the origin of the normal
Riemannian coordinatesyi ? The answer is no, it is not possible because

V (F;ν)
A (y) = h2

2m

R

3
(0)+ O(y) (61)

independent of the valueof ν and, actually, independent on the choice ofµ. Thus,
the initial ambiguity of the canonical quantization not only retains but also becomes
larger in the considered version of the Feynaman quantization.

4.3. Quantum Potential for the Endpoint Evaluation of Integrands (Case B)

In this case, if one takesµ= 0 orµ= 1, again the inadmissible addition of a
term linear inξ̇ to the exponent of the exponential occurs. It is a consequence of
an asymmetric contribution of the endpoints of the interval [ξJ−1, ξJ ] while, for a
given function f (ξ ), expression (48) for̃f (ν)(ξJ−1, ξJ) depends on the endpoints
symmetrically. However, the following symmetric expression forf̃ (ν),

f̃ (ν)(ξJ−1, ξJ) = 1

2
f (ξJ−1)+ 1

2
f (ξJ)+ ν

8
(∂i f (ξJ−1)− ∂i f (ξJ))1ξ i

J

+ ν

16
(∂i ∂ j f (ξJ−1)+ ∂i ∂ j f (ξJ))1ξ i

J1ξ
j
J + O((1ξJ)3),

(62)
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can be easily obtained ifξJ−1 andξJ are at a short distance. Applying this formula
to f̃ (ν)≡ L̃ (ν)

eff in the exponent in formula (46), one should consider contributions
of the adjacent intervals [ξJ−2, ξJ−1] and [ξJ , ξJ+1] at the pointsξJ−1 and ξJ ,
respectively.

The total contribution to the phase atξJ of the terms of̃L (ν)
eff , which are linear

in 1ξ , is

i
νh

8m
εωkl(ξJ)∂iωkl(ξJ)ξ̈ i , (63)

and it can be neglected in the path integration. Here, substitution (52) and relation

1ξJ−1 = 1ξJ − ε2ξ̈J + O(ε3) (64)

are used. Making these substitutions in the terms which are quadratic in1ξ , one
obtains that a quantum potential

V (ν)
B = −

νh2

24m

(
(ωi j ωkl + 2ωikω j l )∂i ∂ jωkl

)
(65)

is added toL̃ (ν)
eff .

The contribution to the phase of the adjacent preexponential termsÄ̃J and
Ä̃J+1,

Ä̃J · Ä̃J+1 = exp(lnÄ̃J + ln Ä̃J+1), (66)

can be calculated in a similar way. To this end, expand the terms in the exponents in
powers of1ξJ and1ξJ+1 up toO((1ξ )3) and collect the terms with the coefficients
that depend onξJ . The remaining terms go over to the analogous contributions
at the pointsξJ−1 andξJ+1. Then, using relation (64), one obtains the following
function ofξJ :

ν− 2

8
ε2ξ̈ i

J+1∂i lnω+
(

2− ν
16

∂i ∂ j lnω+ 1

32
∂i lnω∂ j lnω

)
·1ξ i

J1
i
J +O(ε21ξ ).

(67)
Obviously, the first term here can be neglected under the integration. Hence, using
substitution (52), one finds a contribution to the phase at the pointξJ in a form of
the following quantum potential:

V (ν)
Ä = −

h2

32m
ωi j (2(2− ν)∂i ∂ j lnω + ∂i lnω∂ j lnω). (68)

Then, one should put

V(ξ ) ≡ V (F;ν)
B (ξ )

def= V (ν)
q (ξ )+ VL (ξ )+ V (ν)

Ä (ξ ) (69)

in (43) to retain in the phase only a ratio of the classical action near the pointξJ

for the time intervalε to the Plank constanth.



P1: GAD

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465832 June 17, 2003 11:15 Style file version May 30th, 2002

Quantum Mechanics in Curved Space 485

Now, let us considerV (F;ν)
B at the origin of the normal Riemannian coordinates

yi . Note at once thatV (F;ν)
L (y)=O(y) since

∂i ∂ jωkl(y) = 1

3
(R(ω)ik jl + R(ω)i l jk )(0)+ O(y), (70)

(see, for instance, Synge, 1960). A nonvanishing contribution intoV (ν)
Ä can be

given only by the first term in (68). The contribution vanishes identically if and
only if

ν = 2. (71)

Thus, we come to a remarkable justification of the ordering rule which had been
found by comparison of the canonical and quasiclassical Hamiltonians in Section
3. At the same time, we have fixed a unique way to calculate the path integral
and, in particular, a prescription to evaluate the integrand functions:they should be
evaluated at the nodes of the lattice of integration.The prescription differs from
that induced by the Weyl ordering according to which the evaluation should be
done in the midpoints of intervals of the lattice.

It should be noticed also that the ordering corresponding toν= 2 was men-
tioned among many other ones by D’Olivo and Torres (1989), but we have singled
out it from a two-parametric (inν andµ) set of possible ordering with a necessity.
In the next section, a question will be discussed in particular why the comparison
of quantum Hamiltonians in a vicinity of the origin of the Riemannian coordinates
has a special geometric meaning. As for now, we give the complete expression for
V (2)

B :

V (F;2)
B = − h2

12m
(2ωi j ωkl + ωikω j l )∂i ∂ jωkl

− h2

16m
(2∂iω

i j ∂ j lnω + ωi j ∂i lnω∂ j lnω). (72)

Of course, this Feynman quantum potential differs, in general, from the canonical
one:

V (2)
q (ξ ) = − h2

4m

(
∂i
(
ωi j γ j

)+ ∂i ∂ jω
i j − 1

2
ωi j γi γ j

)
, (73)

(i.e., Eq. (27) forν= 2) and the question remains, which of the potentials is “more
correct?”

5. DISCUSSION OF THE RESULTS OBTAINED

Thus, takingν= 2 in Eq. (23) is proposed as a concrete and unambiguous
solution of the problem of arbitrariness the ordering rule, one of the main difficulties
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of the canonical quantum mechanics inVn. However, the rule is obtained namely
for observables (Hamiltonians) which are quadratic in momenta. If one attempts
to adopt the logic of our construction for an observable of a more complicated
structure, the rule of ordering thus obtained will determine its own “bracket” in
the quantization condition (Q2). It is unclear, will this rule be unambiguous but, in
any case, we come to the conclusion thatfor different classes of observables, there
should be used different “brackets”{.,.}h in condition (Q2). This conclusion may
seem rather strange, but, at least, it does not contradict to the known experimental
data since the corrections to the Poisson bracket in the left-hand side of condition
(Q2) are very small and, correspondingly, differences of corrections for different
versions are small too.

Further, the result refers to the nonrelativistic version of the geodesic dynam-
ics. A more difficult problem of quantization of the relativistic version remains,
which is based on HamiltonianH (ξ, p), eq. (7). Its possible asymptotic solution
by the use of Von Neumann’s rule in the form of (11) has already been given in
Section 2. However, if, for any classical Hamiltonian, its own canonical quantiza-
tion has to be constructed, then the way which was followed for the Hamiltonian
(6) should be passed anew for (7). In this case, an analog of the quasiclassical
HamiltonianĤ (DW)

0 should apparently be the quantum Hamiltonian calculated in
the Blattner–Costant–Souriau formalism for the terms of the asymptotic expansion
(7). It is calculated for the first four terms by Kalinin (1999) and differs from the
result of an immediate application of the Von Neumann rule (11). An analysis of
this difference seems to be an interesting task for understanding relations between
different formalisms of quantization.

Let us pass now to the important point that, to determine the ruleν= 2, it
was principal to compare the HamiltonianŝH (ν)

0 , Ĥ (DW)
0 , Ĥ (F;ν)

0A , and Ĥ (F;ν)
0B in a

vicinity of the origin of the Riemannian coordinatesya namely. Why is this system
distinguished among all possible systems? An answer is apparently as follows.
The position of a point{ξ i } is defined in the Riemannian system completely by the
geodesic line connecting the point with the origin{ξ i

0} and, therefore, only by the
metric of Vn. Indeed, according to Eq. (38) the normal Riemannian coordinates
ya(ξ )= n(a)(ξ )s(ξ ; ξ0) of the point{ξ i } are completely defined by values of the
geodesic distances(ξ ; ξ0) and projectionsn(a)(ξ )= e(a)

i (dξ i /ds)0 of the tangent
vector to the geodesic line connectingξ andξ0. The coordinate lines

y1 = const,. . . , yk−1 = const,yk+1 = const,. . . , yn = const, 1≥ k ≤ n,
(74)

are distinguished by that their alln curvatures vanish. Imagine that a similar system
of coordinates realized not by the geodesics but by the lines determined by some
other equation. Take, for example, the geodesic equation with an external force
in the right-hand side. Such line has, at least, one proper curvature determined
by the force (see a physical oriented exposition of the question by Synge, 1960).
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Respectively, these exterior fields of curvatures of the coordinate lines enter into
quantum theory.

Thus, the class of the Riemannian coordinates turns out to be a preferred one.
It seems to contradict the dogma of general relativity on equivalence of possible
systems of coordinates. The contradiction may possibly be solved as follows. A
quantum–mechanical description of a physical system should include an indication
of the way of measurement (observation) of properties of the system (for a recent
discussion of the question, see Rovelli, 1996). In the Schr¨odinger representation,
a system of coordinates{ξ i } plays two roles simultaneously. On the one hand, it
arithmetizes (“digitizes”) the configuration space by its local map onRn. On the
other hand, it specifiesn primary observables represented in quantum mechanics
by the operatorŝξ the spectra of which may be considered as formalization of
indications of an apparatus detecting a position of the particle. Numerical values
of the indications should not depend on the arithmetization ofVn and, in this
sense, should be represented by scalars with respect to transformations ofξ ′s.
Therefore, let us separate the two roles of the coordinates as follows: keep for
the arbitrary coordinatesξ i the role of arithmetization ofVn and introduce 2n
canonically conjugate scalar functionsq(i )(ξ ), p( j )(ξ, p) by the following canonical
transformation: {

ξ i , pj
}→ {

q(k)(ξ ), p(l )(ξ, p)
}
. (75)

Hereq(k)(ξ ), are fixed 2n functions such that rank‖∂i q( j )‖=n, andp(l )(ξ, p)
def=

K i
(l )(ξ )pi where

K i
( j )(ξ ) = 1

2
det
∥∥∂kq(l )

∥∥ε i i 2...inε( j j2... jn)∂i2q
( j2) . . . ∂inq

( jn) (76)

aren vector fields andε i1i2...in , ε( j1 j2... jn) are completely antisymmetric symbols for
both upper and lower indices. Of course, one may takeq(i )(ξ )≡ ξ i as a particular
case, which means that the arithmetization ofVn and observation of the particle
position are performed by the same tools.

The operators inL2(Vn;C;
√
ωdnξ ), corresponding to the scalar primary ob-

servablesq(i )(ξ ), p( j )(ξ ) are

q̂(i )(ξ ) = q(i )(ξ ) · 1̂, (77)

p̂( j ) = −ih

(
K l

( j )(ξ )∇l + 1

2
∇l K

l
( j )(ξ )

)
. (78)

Introduce a scalar Hamilton operatorĤ (ν)′
0 (ξ ) from the condition that it coincides

with Ĥ (ν)
0 (ξ ) whenq(i )(ξ )≡ ξ i . Restricting for brevity to the case ofν= 2, one has

Ĥ (2)′
0

def= 1

2m
p̂(i )∂kq(i )ωkl∂l q

( j ) p̂( j ) = − h2

2m

(
1(ω) − 1

2
∇kvk + 1

4
vkvk,

)
, (79)
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vk
def= K m

(i )∇m∂kq(i ). (80)

The quantum potential in the right-hand side of (79) does not depend on the choice
of coordinatesξ i , but does on the choice of the observables of positionqi (ξ ). This
corresponds to the concept ofrelational quantum mechanicsdeveloped by Rovelli
(1996) according to which different methods of observation of a quantum system
give different amounts of information on the system. One may think that choosing
the Riemannian coordinatesya as observables, i.e.,q(a)(ξ )≡ ya(ξ ) gives maximal
information on the quantum analogue of the particle moving along a geodesic line
in Vn because, in this case, no outside information is added in the form of the
proper curvatures of coordinate lines.

6. ON QFT-APPROACH TO QUANTUM MECHANICS
IN CURVED SPACES

6.1. Quantum Field Theoretical Basis

To give a more complete exposition of the problem of quantum mechanics
in Vn, an approach which is an alternative to quantization of the geodesic motion
will be outlined in the present section (details can be found in Tagirov, 1999). It
was mentioned in Section 1 as the QFT-approach.

The approach is based on quantum theory of the linear real scalar field
ϕ(x), x ∈V1,n in V1,n, of which the quanta are supposed to be the point-like spin-
less and chargeless particles. Thus, one may think that it should have a domain
of intersection with the approaches based on quantization of the geodesic motion
and considered in the preceding sections.

A sufficiently general equation of the field inV1,n is

¤ϕ + ζR(g)(x)ϕ +
(

mc

h

)2

ϕ = 0, x ∈ V1,n, ¤
def= gαβ∇α∇β. (81)

Here ζ is an arbitrary dimensionless real constant,R(g)(x) and∇α are, respec-
tively, the scalar curvature and the covariant derivative inV1,n. Two values ofζ
are especially distinguished. Forζ = 0, the fieldϕ(x) interacts with the external
gravitational fieldgαβ(x) minimally, that is switched on by immediates substi-
tution of the partial derivatives with respect to the Cartesian coordinates in the
standard Klein–Gordon equation by the covariant derivatives with respect toV1,n.
For ζ = (n− 1)/4n, the interaction is conformal-invariant in the limit ofm= 0;
for n= 3 this property was first noticed by Penrose (1963) and studied in de-
tail by Chernikov and Tagirov (1968) and Tagirov (1973). The latter authors had
found some other properties of the theory with the conformal coupling, which are
favorable from the physical point of view.



P1: GAD

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465832 June 17, 2003 11:15 Style file version May 30th, 2002

Quantum Mechanics in Curved Space 489

In the globally staticV1,n, by which the scope of this paper is restricted, one
hasR(g)=−R(ω). If, in addition,n= 3, andζ = 1/6 then a nonrelativistic limit
of (81) for conformal coupling will be the Schr¨odinger equation just with the
HamiltonianĤ (DW)

0 . However, an almost methaphysical question arises here: Why
the quasiclassical approximation leads to the HamiltonianĤ (DW)

0 to ζ = 1/6 for
any dimensionn while the scalar field theory with the conformal coupling leads
to the same Hamiltonian only for the dimension of the real worldn= 3?

For a time being, we consider again the general metric (1), not necessarily the
globally static one. Canonical quantization ofϕ(x) in the generalV1,n in the Fock
representation is essentially based on the complexificationΦc=Φ⊗C of space
Φ of solutions to Eq. (81) and a selection ofΦ′c⊂Φc which can be represented
as

Φ′c = Φ− ⊕Φ+ (82)

(see, for instance, Gibbons and Pohle, 1993). Here,Φ− and Φ+ are mutually
complex conjugate subspaces ofΦc, for which the conserved sesquilinear form

{ϕ1, ϕ2}6 def= i
∫
6

dσα(ϕ1(x)∂αϕ2(x)− ∂αϕ1(x)ϕ2(x)), (83)

is respectively positive and negative, and thus providesΦ− andΦ+with pre-Hilbert
structures.

Assume that a formal (and auxiliary) basis{ϕ(x; A)} in Φ− exists, which is
enumerated by a multi-indexA having values on a set{A} with a measureµ(A)
and orthonormalized with respect to the inner product (83). Then, the quantum
field operator in a Fock spaceF can be introduced

ϕ̌(x) =
∫
{A}

dµ(A)(č+(A)ϕ̄(x; A)+ č−(A)ϕ(x; A)) ≡ ϕ̌+(x)+ ϕ̌−(x). (84)

(Here and further, operators inF are denoted ašO and calledQFT-operators
contrary to the quantum–mechanical ones, orQM-operators, which are denoted
throughout the paper aŝO.) The operatoršc+(A) and č−(A) are creation and
annihilation of the field modesϕ−(x; A)∈Φ− (or, ofquasiparticles).They satisfy
the canonical commutation relations

[č+(A), č+(A′)] = [č−(A′), č−(A′)] = 0,∫
{A}

dµ(A) f (A)[č−(A), č+(A′)] = f (A′),

for any appropriate functionf (A). They act in the Fock spaceF with the cyclic
vector|0> (the quasivacuum) defined by the equations

č−(A)|0= 0. (85)
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6.2. QFT-Operators of Observables

Now, the following diffeoinvariant quantum field observables can be naturally
introduced.The QFT-operator of a number of quasiparticlesis determined in the
standard way (see, for instance, Schweber, 1961, chap. 7, Section 3):

Ň (ϕ̌;6)
def=

∫
6

dσα
(
ϕ̌+∂αϕ̌− − ∂αϕ̌+ϕ̌−

)
,

def=
∫
6

dσ (x)Ň(x), (86)

wheredσ (x)
def= √ω(t, ξ )dnξ is the inner volume element of6.

The QFT-operator of the projection of momentum of the fieldϕ̂(x) on a
given vector field Kα(x) is also a standard expression determined by the general-
relativistic Lagrangian forϕ:

P̌K (ϕ̌;6)
def= :

∫
6

dσαK βTαβ(ϕ̌) :, (87)

where the colons denote the normal product of operatorsč±(A) andTαβ(ϕ) is the
metric energy–momentum tensor of the fieldϕ(x).

The n QFT-operators

Q̌(i ){ϕ̌;6} = i
∫
6

dσα(x)q(i )
6 (x)(ϕ̌+(x)∂αϕ̌

−(x)− ∂αϕ̌+(x)ϕ̌−(x))

≡
∫
6

dσ (x)q(i )
6 (x)Ň(x) (88)

of position of the quasiparticle on6(t) observed by means of three spatial coor-
dinate scalar functionsq(i )

6 (x), which satisfy the conditions

∂α6∂αq(i )
6 = 0, rank

∥∥∂αq(i )
6

∥∥ = n, (89)

and thus define a point on a given Cauchy hypersurface6={x ∈V1,3|6(x)=
const}. In the globally staticV1,n, their restrictions on a completely geodesic hy-
persurface6 are just functionsq(i )(ξ ) that have been introduced in Section 5. (For
the Cartesian coordinates inE1,3, such an operator was considered by Polubari-
nov, 1973.) It is easy to see that QFT-operatorsQ̌(i ){ϕ̌;6} are unique sesquilinear
(in ϕ̌±) Hermitean forms inF , which can be constructed from ˇϕ±, ∂α6∂αϕ̌±,
and do not contain derivatives ofq(i )

6 (x). The QFT-observables introduced above
are evidently sufficient to describe quantum dynamics of a single quasiparticle if
there is no processes of quasiparticle creation and annihilation as in the case of a
globally staticV1,n, or if these processes can be neglected. Such dynamics is just
quantum mechanics of a quasiparticle the space of states of which is a subspace
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of F consisting of the vectors

|ϕ >
def= {ϕ, ϕ}−1/2

6

∫
{A}

dµ(A){ϕ(.; A), ϕ(.)}6 č+(A)|0 > , (90)

determined by the field configuration

8− 3 ϕ(x) =
∫
{A}

f µ(A){ϕ(.; A), ϕ(.)}6ϕ(x; A).

Obviously〈ϕ|ϕ〉=1. The QM-observables are determined by the matrix elements
of the introduced QFT-operators between two one-quasiparticle states|ϕ1 > and
|ϕ2 > .

6.3. One-Particle States and Observables

There are infinitely many decompositions (82) and they generate Fock repre-
sentations of the canonical commutation relations of the quantum field which are
unitarily unequivalent in general. The main problem is to distinguish a subspace
8− in the space8c of solutions of the field Eq. (81) for which the introduced
formal quantum mechanics of a quasiparticle corresponds to the geodesic motion
in V1,n and, therefore, may be called quantum mechanics ofa particle. In the
generalV1,n, this problem can be solved only as a quasinonrelativistic asymptotic
approximation to the formal scheme, since the formally exact relativistic quantum
mechanics can be constructed only in the globally staticV1,n (see below). There-
fore, we take as8− a space8−L of the following asymptotic inc−2 solutions of
Eq. (81)

ϕL (x) =
√

h

2mc
exp

(
−i

mc

h
S6(x)

)
V̂L (x)ψ(x). (91)

The notation here needs detailed explanations.
S6(x) is a solution of the Hamilton–Jacobi equation

∂αS6∂
αS6 = 1, (92)

which satisfies the initial conditionsS6(x)|6 = 0 and (r α(x)∂αS6(x))|6 > 0 for
any timelike vector fieldτα(x) directed into the future. Any hypersurfaceS6(x)=
const, denoted further simply asS, is a level surface of the normal geodesic flow
through6.

ψ(x) is a solution of Schr̈odinger equation

i hc

(
∂αS∂α + 1

2
¤S

)
ψ(x) = (

Ĥ (ft)
L + O

(
c−2(L+1)

))
ψ(x), (93)

Ĥ (ft)
L

def= Ĥ (ft)
0 +

L∑
l=1

ĥn

(2mc2)n
, (94)
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Ĥ (ft)
0

def= − h2

2m

(
1S(x)− ζR(x)+

(
1

2
(∂S∂¤S)+ 1

4
(¤S)2

))
, (95)

and ĥl are differential operators which are determined by certain recurrence re-
lations starting withH (ft)

0 and contain only derivatives along the hypersurfaceS
(“spatial derivatives”).

V̂L (x) is an asymptotical differential QM-operatoralongS

V̂L (x) ≡ 1̂+
L∑

l=1

V̂l

(2mc2)l
+ O(c−2(L+1)), (96)

where the operators ˆvl are determined by the asymptotic relation

{ϕ1, ϕ2}S = (ψ1, ψ2)S
def=

∫
S

dσψ̄1ψ2+ O(c−2(L+1)), ϕ1, ϕ2 ∈ 8−L . (97)

It provides8−L with the structure ofL2(S;C; σ ) andψ by the standard Born prob-
abilistic interpretation in each configuration spaceS, i.e. |ϕ(x)|2 is the probability
density to observe the field configuration which may be called “a particle” at the
point x belonging to the given hypersurfaceS. At least, this field configuration
satisfies an intuitive idea of what is the quantum particle as a localizable object.

Thus, we have defined the space of states of a particle and can calculate
the asymptotical one-to-one-particle transition probability amplitudes of form
〈ϕ1|Ǒ|ϕ2〉 for the QFT-operators of the observables defined earlier. To this end,
each time when “the time derivative”∇αS∇α appears in calculations, it should
be substituted by the differential operator alongS of the appropriate order de-
termined by the Schr¨odinger Eq. (93). In effect, this completes the deduction of
quantum mechanics of the particle inV1,n from quantum field theory in the quasi-
nonrelativistic approximation because we have the matrix elements of observables
of the particle, which were considered in Section 2. However, to compare the
QFT-results with those of the canonical quantization, we need the operator rep-
resentations of the observables as differential operators inL2(S;C; σ ). They are
defined up to an asymptotically unitary transformation by the following general
relation:

〈ϕ1|Ǒ|ϕ2〉 = (ψ1, (Ô)Lψ2)S
def=

∫
S

dσψ̄1(Ô)Lψ2+ O(c−2(L+1)), ϕ1, ϕ2 ∈ Φ−L

(98)

(Ô)L
def= (Ô)0+

L∑
l = 1

ôl

(2mc2)l
, (99)

whereÔ is any of the QFT-operators and, again,ôn are differential QM-operators
alongS determined by recurrence relations starting with (Ô)0. From Eq. (98), it
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follows that

(N̂)L = 1̂+ O(c−2(L+1)). (100)

For other observables, from Eqs. (88), (87), and (99), one has the following non-
relativistic QM-operators for further calculations of relativistic corrections:the
particle position on S (

q̂(i )
S (x)

)
0

def= q(i )
S (x) · 1̂, (101)

the particle momentum along Kα( j )={0, K i
( j )} whereK i

( j ) is defined as in Eq. (76)(
p̂( j )(x)

)
0

def= (
PK( j )

)
0 = i h

(
K α

( j )∇α +
1

2
∇αK α

( j )

)
, (102)

and the particle energy

(E(x))0
def= (PK )0|K α=c∂αS = Ĥ (ft)

0 . (103)

It is remarkable that not only nonrelativistic expressions for the energy QM-
operator originated by the energy–momentum tensorTαβ and for the Hamiltonian
in the Schr¨odinger equation (93) coincide but also their asymptotic representations
of any orderL areasymptotically unitary equivalent(see Tagirov, 1999).

6.4. Quantum Mechanics in the Globally Static Space-Time and Deformation
of Canonical Commutation Relations

Pass now to the case of globally staticV1,n and consider it, as in Sections
2–5, in a system of coordinates{xα}∼ {t, ξ} in whichωi j (t, ξ )ωi j (ξ ). Then, the
asymptotic expansions above can be represented in the formal closed forms

Ĥ (ft)
∞ = mc2

((
1+ 2Ĥ (ft)

0

mc2

)1/2

− 1

)
, Ĥ (ft)

0 = −
h2

2m
(1S− ζR), (104)

V̂∞ =
(

1+ 2Ĥ (ft)
0

mc2

)−1/4

, (105)

( p̂( j ))∞(x) = − i h

2
V̂−1
∞ ·

(
K i

( j )∇i
) · V̂∞ + i h

2
,̂V∞ · (K i

( j )∇i )
† · V̂−1

∞

− hζ

2mc2
V̂∞ · (c∂αS∇α)(∇r K r ( j )) · V̂∞ (106)

c( p̂∂S)∞(x) = mc2

(
1+ 2Ĥ (ft)

0

mc2

)1/2

(energy operator), (107)

(
q̂(i )

S

)
∞ = q(i )

S (x)+ 1

2

[
[V̂∞, q(i )

S (x)], V̂−1
∞
]
. (108)
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Recall that we use∇α and∇i to denote the covariant derivative with respect to the
metric tensorsgαβ andωi j respectively.

6.5. QFT-Approach vs. Quantization of Geodesic Motion

What conclusions can be made from the formulae obtained just now compar-
ing them with the results of Sections 2 and 3?

1. They are diffeoinvariant inVn andV1,n owing to introduction of the func-
tions q(i )

S (x), which were proposed in Section 5 to separate background
coordinatesξ on Vn (that is onS) from the coordinatesq(i )

S in terms of
which a position onSof the quantum particle is observed.

2. The relativistic HamiltonianĤ (ft)
∞ is expressed through the nonrelativistic

one Ĥ (ft)
0 just by formula (11) and supports the asymptotic meaning of

quantization ofH (p, ξ ), Eq. (7).
3. The nonrelativistic Hamiltonian̂H (ft)

0 is similar to DeWitt’s oneĤ (DW)
0 ,

Eq. (36), but the coefficient before the scalar curvatureR is an arbi-
trary constantζ in Ĥ (ft)

0 instead of value (1/6) inĤ0(ξ ). As it has already
been said, the latter distinguished value ofζ corresponds to the confor-
mal coupling ofϕ to gravitation, but only whenn= 3. Another interest-
ing difference is thatĤ (ft)

0 is an exact expression with no other quantum
potential terms ifc−1= 0 while Ĥ (DW)

0 (ξ ) is the quasiclassical approx-
imate expression. This difference is very interesting and poses a ques-
tion: the nondiffeoinvariant part of quantum potential, is it a deficiency
of the quantization of mechanics or is its absence in the QFT-approach
a manifestation of some incompleteness of the canonical quantization
of field?

4. The most remarkable consequence of the QFT-approach is that the position
operators (̂q(i )

S )N do not commute among themselves except the case of
N= 0 and the same takes place for the momentum ones (p̂( j ))N . Therefore,
the canonical commutation relations (15) are fulfilled only in the exactly
nonrelativistic casec−1= 0 andthe quasi-nonrelativistic commutation re-
lations of primary observables are a deformation of the nonrelativistic
ones. An analogous deformation of theo(3) algebra of the spin 1/2 opera-
tors arises when the QFT-approach is used for the Dirac particles (Tagirov,
1996).

5. The QFT-approach gives at once a quasi-nonrelativistic quantum mechan-
ics in the generalV1,n and arbitrary frame reference formed by the normal
geodesic flow through an arbitrary Cauchy hypersurfaceS. In contrast,
quantization of mechanics is formulated earlier only in the globally static
and topologically elementaryVn and only in the frame of reference in
which the metric tensor is time independent; this frame is formed by the
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Killing flow. A consecutive formulation in the latter case needs a special
study.

6. Morever, since the theory is formulated actually in terms of matrix elements
of the form (99), it may be applied toVn of any topology.

7. The QFT-approach opens a way to formulate quantum mechanics of par-
ticles with nonzero spin, for which there are no classical counterparts.

6.6. Space Quantization in the Friedmann–Robertson–Walker Universe

At last, I like to announce an interesting result obtained in the QFT-approach
for the case of the Friedmann–Robertson–Walker universe and a natural frame of
reference in it, in which

ds2 = c2 dt2− b2(t)ω̃i j (ξ ) dξ i dξ j , i , j , . . . = 1, 2, 3. (109)

Let q(i )
S∼t0

(ξ )= X(i )(ξ ) be the normal Riemannian coordinates which are measured
in the units of the cosmological scale factorb(t). In the standard Euclidean vector
notation{X(1), X(2), X(3)}≡ EX (see, for instance, Weinberg, 1972, chap. 13), one
has

ω̃i j dξ i dξ j = (d EX)2+ k( EX · d EX)

1− k EX2
,

wherek= 1, 0,−1 for the spatially spherical, flat, and hyperspherical universes,
respectively.

Since the space geometry depends on the cosmological timet , the structure
of quasi-nonrelativistic quantum mechanics and, thus, the notion of a particle are
specified by an initial momentt0 in which the Cauchy problem for the Schr¨odinger
equation is posed. In the first nonvanishing order inC−2, which isO(C−4) for any
q̂(i )

S∼t0
(ξ ) in anyV1,n. For the normal Riemannian coordinates, one has in this order

[(
X̂(i )

)
2,
(
Ŷ( j )

)
2

] = −k

(
λC

b(t0)

)4(
X(i ) ∂

∂Y( j )
− Y(i ) ∂

∂X( j )

)
+ O(c−6), (110)

whereλC = h/2mcis the Compton wavelength of the particle. It is remarkable that
relation (110) is theo(3)-part of the basic formula in Snyder’s theory of quantized
Minkowsky space-time (Snyder, 1947):

[ x̂α, ŷβ ] = l 2
0L (αβ)

whereL (αβ) are the Lorentz group generators,xα are the ordinary Cartesian coor-
dinates andl0 is an elementary length. According to relation (110),the space seems
to be quantized in principle in the standard theorywith no additional hypothe-
ses, except the case of spatially flat universe, i.e.,k= 0, and the elementary length
l (t0)= (λC/b(t0))λC depends on the moment of time in which the Schr¨odinger rep-
resentation is specified. However, one should remember that a particle specified by
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the momentt0 has to be sufficiently heavy, the quasi-nonrelativistic approximation
to be valid, and the processes of particle creation and annihilation caused by the
time dependence of the cosmological factorb(t) to be negligible. To conclude
finally, may the space quantization have at least, a hypothetical physical sense, or,
is it an artefact of the approximation, it is necessary also to estimate contributions
of the next order inc−2 and, in the case ofk= 1, to take into account singularity
at EX2= 1. This author hopes to present such study in future elsewhere.

The most important point is, however, that the deformation of the canonical
commutation relations and, consequently, the space quantization disappear for
any L andt0 in the exceptional casek= 0, i.e., in the spatially flat universe (see
the general proof in Tagirov, 2000). This fact correlates remarkably with that,
according to the modern astrophysical observational data, the real Universe is
spatially flat with fantastically high accuracy which needs to be explained (the so-
called problem of flatness). Could the last result not to be a quantum–mechanical
reason for the flatness?
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